
 
Introduction to Jeroo 

Version 2.3 
(Java/C++/C# Style) 

 
 

 
 
 

Dean Sanders and Brian Dorn 
Northwest Missouri State University 

 



Table of Contents 
 
 
 

Chapter 1 – The Jeroos of Santong Island  1 

Chapter 2 – Essential Concepts  3 

Chapter 3 – Problem Solving and Algorithms  8 

Chapter 4 – Simple Programs  15 

Chapter 5 – Creating and Using Jeroo Methods 31 

Chapter 6 – Control Structures  47 

Appendix A – The Java/C++/C# Language Summary  59 

Appendix B – A Brief History of Jeroo 68 

Appendix C – Using Jeroo 70

Introduction to Jeroo—Java/C++/C# Style  i



Chapter 1 – The Jeroos of Santong Island 
 
 
1.1  Jeroo’s World 
 Santong island is an uninhabited speck of land in the South Pacific Ocean.  In the late 1980’s, 
naturalist Jessica Tong discovered two previously unknown species that are unique to this island.  
One is the jeroo, a rare mammal similar to the wallabies of Australia.  The other is the large 
winsum flower that is the jeroo’s primary food source.  
 Like its distant Australian relative, the jeroo moves by hopping, but its movements are 
unique in all of nature.  Each jeroo only moves in one of the four main compass directions, and 
only turns in 90o increments.  This unusual behavior continues to mystify Jessica and the few 
other researchers who have observed jeroos in the wild.  Some believe that this behavior is 
somehow related to geomagnetic forces, but others think that this is just a bizarre learned 
behavior. 
 Every jeroo has a pouch, but the male’s pouch is somewhat smaller.  While the female uses 
her pouch to protect and nurture her offspring, both sexes use their pouches to carry winsum 
flowers that they have picked.    
 During the rainy season, January through December, sudden storms can create temporary 
lakes and rivers, or even alter the shape of the island, itself.  Despite living on Santong island for 
uncounted millennia, the jeroos are extremely poor swimmers.  While they are keenly aware of 
their immediate surroundings, jeroos can be careless.  If one happens to hop into the ocean, its 
fur becomes waterlogged, and it must rest in the sun for a few hours before resuming its normal 
activity.  In what can only be described as a telepathic connection, all other jeroos also cease 
their activities until the wet jeroo has recovered. 
 Until recently, the jeroos were safe from human interference because they were only known 
to a handful of researchers and because Santong island is very small, very remote, and missing 
from most maps.  The jeroos’ idyllic world was interrupted in 2001, when Brian arrived at the 
island.  Brian is a renowned collector who was hired to capture a jeroo for the extreme animal 
exhibit at Missouri’s C. A. Baret zoo.  Having studied the jeroos’ unique patterns of movement, 
Brian periodically sets nets in the locations that a jeroo is likely to visit.  Fortunately, the 
sensitive jeroos can detect his nets, and have learned that tossing a winsum flower onto a net will 
disable the net and make that location safe for future travel.  Brian can only catch a careless jeroo 
that leaps before it looks. 
  
1.2  The Jeroo Simulator 
 After returning from a recent trip to Santong Island, Jessica asked her colleague, Deanna, to 
develop a simulator that could be used to demonstrate the jeroos and their relationship with their 
island.  The result of Deanna’s work is a computer program, named Jeroo, and a Jeroo 
programming language that work together to help Jessica with her research.  The Jeroo language 
allows a programmer to direct the movements of up to four jeroos.  The simulator contains a 
visual component that allows one to see the results of running a Jeroo program. 
 When Deanna designed the simulator, she used the jeroos’ unique movements to 
model the island as a grid of rows and columns similar to a spreadsheet.  There are 24 
rows and 24 columns.  The rows run East and West along lines of latitude, and the 
columns run North and South along lines of longitude.  Each element (cell) of this model 
corresponds to a location where a jeroo might land when it hops.   

Introduction to Jeroo—Java/C++/C# Style  1



 Deanna chose to number both the rows and columns starting with zero at the 
northwest corner of the island.  When asked why she started at zero, Deanna said that she 
was counting the number of safe hops from any location to the northwest corner.  
Deanna’s model is shown in figure 1.1.  
 We will use the notation (r,c) to indicate a specific cell, where r represents the row 
number of the cell, and c represents its column number.  For example, (4,5) indicates the 
cell in row number 4 and column number 5. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
0                         
1                         
2                         
3                         
4                         
5                         
6                         
7                         
8                         
9                         

10                         
11                         
12                         
13                         
14                         
15                         
16                         
17                         
18                         
19                         
20                         
21                         
22                         
23                         

Cell (4,5) 

 
Figure 1.1 – The Model for Santong Island 

 
 Appendix C contains a detailed description of the simulator and its use. 

Introduction to Jeroo—Java/C++/C# Style  2



Chapter 2 – Essential Concepts 
 
 
 The Jeroo language is a small object-oriented programming language. We will use the 
Jeroo language to write programs that control up to four jeroos. This chapter describes 
several general concepts about object-oriented programs.  As you read subsequent 
chapters, refer back to this chapter to review the meaning of important words and 
phrases. 
 
2.1  Programs and Programming Languages 
 It doesn’t matter whether we are sending email, surfing the net, listening to music, 
writing an essay, or playing a game, whenever we use a computer we are using one or 
more computer programs.  Each program is simply a set of instructions for the computer. 
 

 
 
A computer program is a set of instructions for a computer. 

 
 
 Every program is written by one or more programmers.  Programmers use a 
programming language such as Java, C++, Python, or Visual Basic to write a computer 
program.   
 Programs exist in many forms.  The form that a programmer writes is called the 
source code for the program.  Unfortunately, a computer cannot use source code directly.  
Source code must be translated into machine language before it can be executed (run) by 
the computer.   
 

The source code for a program is written by a programmer in some 
programming language. 

 
 
 
 There are several kinds of translation.  A compiler translates a program, as a whole, 
from one form into another, but not necessarily into machine language.  An interpreter 
translates a program into machine language one statement at a time.  Each statement is 
executed as soon as it has been translated.  
 

A compiler translates a program, as a whole, from one form to another.  
 
 

An interpreter translates a program into machine language one 
statement at a time. 

 
 
 
 
 Both Java and Jeroo use a two-step approach to translating source code into machine 
language.  First, a compiler translates the source code into an intermediate language. 
Second, an interpreter translates the intermediate language into executable instructions. In 
the case of Java, this intermediate language is called Java Byte Code, and the interpreter 
is called the Java Virtual Machine. 

Introduction to Jeroo—Java/C++/C# Style  3



2.2  Algorithms 
 Every computer program starts with a plan.  That plan is called an algorithm.  
There are many ways to write an algorithm.  Some are very informal, some are 
quite formal and mathematical in nature, and some are quite graphical.  The form 
is not particularly important as long as it provides a good way to describe and 
check the logic of the plan.  
 

 
 
An algorithm is a plan for solving a problem. 

 
 
2.3  Case-Sensitive Language 
 In Jeroo’s Java/C++/C#-style programming language, upper-case letters and 
lower-case letters are treated as being different from one another.  For example, 
the words “jessica", “Jessica”, and “JESSICA” are treated as three different 
names.  Other languages might treat these as being the same. 
 

 
 
A language that treats upper-case and lower-case letters as being different 
from one another is said to be case-sensitive. 

 
 
2.4  Syntax and Semantics 
 Every language, whether it is a natural language such as English or a 
programming language such as Java, has a vocabulary, a syntax, and a semantic 
meaning.  
 

 
 
Syntax is a set of rules for writing or speaking that language. 

 
 

 
 
The meaning associated with valid expressions is known as the 
semantics of the expression. 

 
 
 Examples 

One syntax rule is that the symbol “?” must appear at the end of a question in 
written English.  
The sentences “The balls bounce.” and “Bounce the balls.” use the same words and 
punctuation, but have different semantics (different meanings).   

Introduction to Jeroo—Java/C++/C# Style  4



2.5  Object 
 It should come as no surprise to learn that an object-oriented programming 
language works with objects.  But, what is an object?  Unfortunately, this concept 
is difficult to define because an object is simultaneously something that only 
exists within a computer program and a logical representation of something else.  
A good approach is to define an object in terms of what it represents.  
 

 
 
An object represents a specific concept or item that is relevant to the 
problem we are trying to solve. 

 
 
 A typical program works with several different objects.  Some of these may represent 
the same kind of thing.  For example, suppose our problem were to manage the rental of 
books to students.  We would likely have some objects that represent the books and 
others that represent the students.  Now, if Kim were to rent “Haiku and You” and 
“Cooking with Mystery Meat”, we might have two objects, one for each of these books. 
 The Jeroo programming language only supports one kind of object – the Jeroo, but a 
single program can work with as many as four Jeroo objects.  These objects should work 
together to solve a problem. 
 An object represents something, but we, as programmers, need to determine what 
characteristics of that thing are important to the problem we are trying to solve.  There 
are two parts to an object, facts about the thing it represents and tasks that the object can 
perform.  The facts are called attributes, and the tasks are called methods.  
 
2.6  Attribute 
 When designing an object to represent something, we must select facts about 
that thing that are relevant to the problem we are trying to solve.  For example, the 
title of a book would be important to a bookstore, but not to the company that 
shipped the book from the publisher’s warehouse.  On the other hand, the weight 
of the book would be important to the shipper, but not to the bookstore.  Facts 
such as the title or weight of a book are called attributes.  
 

 
 
An attribute is a fact associated with a specific object. 

 
 
 The attributes of a Jeroo object include its location, the number of flowers in its 
pouch, and the direction it’s facing. 

Introduction to Jeroo—Java/C++/C# Style  5



2.7  Methods and Behaviors 
 When we design an object, we need to determine what tasks it should perform.  In 
doing so, we tend to anthropomorphize the item that the object represents.   
(To anthropomorphize means to ascribe human characteristics to non-human things.)   
For example, we might want a book to tell us its price or to display a picture of its 
cover on the screen.   
 

 
 
A behavior is an action that an object can take or a task that it can 
perform in response to a request from an external source. 

 
  
 

 
 
A method is a collection of statements that are written in some 
programming language to describe a specific behavior. 

 
 

A precondition for a method is something that is assumed to be 
true before the method is invoked. 

 
 
 
 

A postcondition for a method is something that is assumed to be 
true after the method has been executed. 

 
 
 
 
 All Jeroo objects share the same set of behaviors.  There is a set of predefined 
behaviors, but the language allows us to write methods that define additional behaviors. 
 
2.8  Message (Invoking a Method) 
 When we write an object-oriented program, we instantiate appropriate objects, 
and ask them to perform specific tasks.  We use messages to make these requests.  
 

 
 
A message is a request for a specific object to perform a specific task. 

 
 

 
 
When we ask an object to perform a task, we say that we are sending 
a message or invoking the method that describes the task. 

 

Introduction to Jeroo—Java/C++/C# Style  6



2.9  Classes and Instantiation 
 A programmer must determine which objects are relevant to the problem 
being solved and the attributes and behaviors of those objects.  These attributes 
and behaviors must be written in a programming language.  
 

 
 
A class is a collection of statements that are written in some 
programming language to describe both the attributes and behaviors 
of an object.  

 
 
 A class is similar to a recipe for a cake or a blueprint for a house.  Many 
people view a class as being a template for creating an object.   
 When we write an object-oriented program, we need to create specific objects 
as defined by the statements in the class.  We “bake” to create a cake, we “build” 
to create a house, and we “instantiate” to create on object within a computer 
program.  
 

 
 
The process of creating a specific object is called instantiation. 

 
 All objects that have been instantiated from the same class have the same behaviors, 
but usually have different values for their attributes.  For example, two different book 
objects usually have different ISBN numbers. 
 
 Most object-oriented programs use two types of classes. Programmer-defined classes 
are ones that have been written by the programmer as part of the solution to a problem.  
Predefined classes have been purchased separately or are part of the programming 
language, itself.   
 The Jeroo language only supports a single predefined class – the Jeroo class.  We can 
instantiate up to four Jeroos from this class. 
 

Introduction to Jeroo—Java/C++/C# Style  7



Chapter 3 – Problem Solving and Algorithms 
 
 
 This chapter provides an introduction to a process for developing a solution to a 
problem. Nothing in this chapter is unique to using a computer to solve a problem.  This 
process can be used to solve a wide variety of problems, including ones that have nothing 
to do with computers.  
 
3.1  Problems, Solutions, and Tools 
 I have a problem!  I need to thank Aunt Kay for the birthday present she sent me.  I 
could send a thank you note through the mail.  I could call her on the telephone.  I could 
send her an email message.  I could drive to her house and thank her in person.  In fact, 
there are many ways I could thank her, but that’s not the point.  The point is that I must 
decide how I want to solve the problem, and use the appropriate tool to implement (carry 
out) my plan. The postal service, the telephone, the internet, and my automobile are tools 
that I can use, but none of these actually solves my problem.  In a similar way, a 
computer does not solve problems, it’s just a tool that I can use to implement my plan for 
solving the problem. 
 Knowing that Aunt Kay appreciates creative and unusual things, I have decided to 
hire a singing messenger to deliver my thanks.  In this context, the messenger is a tool, 
but one that needs instructions from me.  I have to tell the messenger where Aunt Kay 
lives, what time I would like the message to be delivered, and what lyrics I want sung.  A 
computer program is similar to my instructions to the messenger. 
 The story of Aunt Kay uses a familiar context to set the stage for a useful point of 
view concerning computers and computer programs.  The following list summarizes the 
key aspects of this point of view. 
 

 A computer is a tool that can be used to implement a plan for solving a problem. 
 A computer program is a set of instructions for a computer.  These instructions 

describe the steps that the computer must follow to implement a plan. 
 An algorithm is a plan for solving a problem. 
 A person must design an algorithm. 
 A person must translate an algorithm into a computer program. 

 
  
 This point of view sets the stage for a process that we will use to develop solutions to 
Jeroo problems.  The basic process is important because it can be used to solve a wide 
variety of problems, including ones where the solution will be written in some other 
programming language. 
 

Introduction to Jeroo—Java/C++/C# Style  8



3.2  An Algorithm Development Process 
 Every problem solution starts with a plan.  That plan is called an algorithm.   
 
 

An algorithm is a plan for solving a problem.  
 
 
 There are many ways to write an algorithm.  Some are very informal, some 
are quite formal and mathematical in nature, and some are quite graphical.  The 
instructions for connecting a DVD player to a television are an algorithm.  A 
mathematical formula such as  πR2  is a special case of an algorithm.  The form is 
not particularly important as long as it provides a good way to describe and check 
the logic of the plan.  
 The development of an algorithm (a plan) is a key step in solving a problem.  Once 
we have an algorithm, we can translate it into a computer program in some programming 
language.  Our algorithm development process consists of five major steps.   
 
 
 Step 1:  Obtain a description of the problem. 
 Step 2:  Analyze the problem. 
 Step 3:  Develop a high-level algorithm 
 Step 4:  Refine the algorithm by adding more detail. 
 Step 5:  Review the algorithm. 
 
 
 Step 1: Obtain a description of the problem. 
 This step is much more difficult than it appears.  In the following discussion, the 

word client refers to someone who wants to find a solution to a problem, and the 
word developer refers to someone who finds a way to solve the problem.  The 
developer must create an algorithm that will solve the client’s problem.  

 
 The client is responsible for creating a description of the problem, but this is often the 

weakest part of the process.  It’s quite common for a problem description to suffer 
from one or more of the following types of defects: (1) the description relies on 
unstated assumptions, (2) the description is ambiguous, (3) the description is 
incomplete, or (4) the description has internal contradictions.  These defects are 
seldom due to carelessness by the client.  Instead, they are due to the fact that natural 
languages (English, French, Korean, etc.) are rather imprecise.  Part of the 
developer’s responsibility is to identify defects in the description of a problem, and to 
work with the client to remedy those defects.  

 

Introduction to Jeroo—Java/C++/C# Style  9



Step 2: Analyze the problem. 
 The purpose of this step is to determine both the starting and ending points for 

solving the problem.  This process is analogous to a mathematician determining what 
is given and what must be proven.  A good problem description makes it easier to 
perform this step. 

 
 When determining the starting point, we should start by seeking answers to the 

following questions.  
 What data are available?   
 Where is that data?   
 What formulas pertain to the problem?   
 What rules exist for working with the data? 
 What relationships exist among the data values?  

  
 When determining the ending point, we need to describe the characteristics of a 

solution.  In other words, how will we know when we’re done?  Asking the following 
questions often helps to determine the ending point. 

 What new facts will we have?   
 What items will have changed?   
 What changes will have been made to those items?   
 What things will no longer exist?  

  
  
Step 3:  Develop a high-level algorithm. 
 An algorithm is a plan for solving a problem, but plans come in several levels of 

detail.  It’s usually better to start with a high-level algorithm that includes the major 
part of a solution, but leaves the details until later.  We can use an everyday example 
to demonstrate a high-level algorithm. 

 
 Problem:  I need a send a birthday card to my brother, Mark. 
 Analysis:  I don’t have a card.  I prefer to buy a card rather than make one myself. 
 High-level algorithm: 
  Go to a store that sells greeting cards 
  Select a card 
  Purchase a card 
  Mail the card 
 
 This algorithm is satisfactory for daily use, but it lacks details that would have to be 

added were a computer to carry out the solution.  These details include answers to 
questions such as the following. 

  “Which store will I visit?” 
  “How will I get there: walk, drive, ride my bicycle, take the bus?” 
  “What kind of card does Mark like: humorous, sentimental, risqué?” 
 These kinds of details are considered in the next step of our process. 
  

Introduction to Jeroo—Java/C++/C# Style  10



Step 4: Refine the algorithm by adding more detail 
 A high-level algorithm shows the major steps that need to be followed to solve a 

problem.  Now we need to add details to these steps, but how much detail should we 
add?  Unfortunately, the answer to this question depends on the situation.  We have to 
consider who (or what) is going to implement the algorithm and how much that 
person (or thing) already knows how to do.  If someone is going to purchase Mark’s 
birthday card on my behalf, my instructions have to be adapted to whether or not that 
person is familiar with the stores in the community and how well the purchaser 
known my brother’s taste in greeting cards. 

 
 When our goal is to develop algorithms that will lead to computer programs, we need 

to consider the capabilities of the computer and provide enough detail so that 
someone else could use our algorithm to write a computer program that follows the 
steps in our algorithm.  As with the birthday card problem, we need to adjust the level 
of detail to match the ability of the programmer.  When in doubt, or when you are 
learning, it is better to have too much detail than to have too little. 

 
 Most of our examples will move from a high-level to a detailed algorithm in a single 

step, but this is not always reasonable.  For larger, more complex problems, it is 
common to go through this process several times, developing intermediate level 
algorithms as we go.  Each time, we add more detail to the previous algorithm, 
stopping when we see no benefit to further refinement.  This technique of gradually 
working from a high-level to a detailed algorithm is often called stepwise 
refinement. 

 
Stepwise refinement is a process for developing a detailed algorithm by 
gradually adding detail to a high-level algorithm.  

 
 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  11



Step 5: Review the algorithm. 
 The final step is to review the algorithm.  What are we looking for?  First, we need to 

work through the algorithm step by step to determine whether or not it will solve the 
original problem.  Once we are satisfied that the algorithm does provide a solution to 
the problem, we start to look for other things.  The following questions are typical of 
ones that should be asked whenever we review an algorithm.  Asking these questions 
and seeking their answers is a good way to develop skills that can be applied to the 
next problem. 

 Does this algorithm solve a very specific problem or does it solve a more general 
problem?  If it solves a very specific problem, should it be generalized? 
For example, an algorithm that computes the area of a circle having radius 5.2 
meters (formula π*5.22) solves a very specific problem, but an algorithm that 
computes the area of any circle (formula π*R2) solves a more general problem.  

 Can this algorithm be simplified? 
One formula for computing the perimeter of a rectangle is 
   length + width + length + width.    
A simpler formula would be 
  2.0*(length + width).   

 Is this solution similar to the solution to another problem?  How are they 
alike?  How are they different?  
For example, consider the following two formulas. 
 Rectangle area = length * width 
 Triangle area = 0.5*base*height 
Similarities: Each computes an area. Each multiplies two measurements. 
Differences: Different measurements are used.  The triangle formula contains 0.5. 
Hypothesis: Perhaps every area formula involves multiplying two measurements. 

 
 

Introduction to Jeroo—Java/C++/C# Style  12



3.3  Example 3.1 – Pick and Plant 
 This section contains an extended example that demonstrates the algorithm 
development process.  To complete the algorithm, we need to know that every Jeroo can 
hop forward, turn left and right, pick a flower from its current location, and plant a flower 
at its current location.  In chapter 4, we will use this algorithm to develop and test a Jeroo 
program. 
 
Problem Statement (Step 1)
 A Jeroo starts at (0,0) facing East with no flowers in its pouch.  There is a flower at 
location (0,3).  Write a program that directs the Jeroo to pick the flower and plant it at 
location (2,3).  After planting the flower, the Jeroo should hop one space East and stop.  
There are no other nets, flowers, or Jeroos on the island. 
 
  Jeroo             
  Flower 
 

 0 1 2 3 4   0 1 2 3 4 
0       0      
1       1      
2       2      
3       3      
4       4      

 Start Finish 
 
Analysis of the Problem (Step 2) 

1. The flower is exactly three spaces ahead of the jeroo. 
2. The flower is to be planted exactly two spaces South of its current location. 
3. The Jeroo is to finish facing East one space East of the planted flower. 
4. There are no nets to worry about. 

  
High-level Algorithm (Step 3) 

Let’s name the Jeroo Bobby. 
Bobby should do the following 
 Get the flower 
 Put the flower 
 Hop East 

 

Introduction to Jeroo—Java/C++/C# Style  13



Detailed Algorithm (Step 4) 
Let’s name the Jeroo Bobby. 
Bobby should do the following 
 Get the flower 
  Hop 3 times 
  Pick the flower 
 Put the flower 
  Turn right 
  Hop 2 times 
  Plant a flower 
 Hop East 
  Turn left 
  Hop once 

   
Review the Algorithm (Step 5) 

1. The high-level algorithm partitioned the problem into three rather easy 
subproblems.  This seems like a good technique. 

2. This algorithm solves a very specific problem because the Jeroo and the flower 
are in very specific locations.   

3. This algorithm is actually a solution to a slightly more general problem in which 
the Jeroo starts anywhere, and the flower is 3 spaces directly ahead of the Jeroo. 

 
 

Introduction to Jeroo—Java/C++/C# Style  14



Chapter 4 – Simple Programs 
 
 This chapter provides an introduction to the process of writing a Jeroo program.  We 
introduce the form of a program, the possible ways to instantiate (create) a Jeroo, and the basic 
actions that every Jeroo understands. 
 
4.1  Basic Concepts 
 At one level, a Jeroo program is just a text file, but one with identifiable parts.  The largest 
parts are called methods (section 4.2 and chapter 5).  The body of each method consists of 
comments, blank lines, action statements (section 4.4), and control structures (chapter 6).   
 Jeroo’s Java/C++/C#-style programming language is case-sensitive.  This means that upper-
case and lower-case letters are considered to be different from one another.  We need to be 
careful and consistent whenever we type the source code for a Jeroo program. 
 It’s not enough to write a program that solves the intended problem.  The program’s logic 
must be well designed, and it must be easy for someone to read and understand the program’s 
source code.  Whitespace, comments, and descriptive identifiers all contribute to making a 
program easier to read. 
 Whitespace consists of blank lines, spaces, tabs, and newline (end-of-line characters).  Blank 
lines should be used to organize the parts of the source code into groups that correspond to the 
logic of the algorithm.  Indentations using tabs or spaces should be used to show the extent of 
methods and control structures.  Spaces should be used to help a reader see the important parts of 
a line of source code.  A newline (press Enter or Return on the keyboard) should be used at the 
end of every statement, to break up long statements into smaller parts, and to help show the 
major parts of the code.  The recommended way to use whitespace will be demonstrated in the 
examples, and discussed as necessary. 
 Comments are phrases that a programmer inserts into a program to provide additional 
information for anyone who reads the program.  Comments are ignored when the program is 
executed (run).  A comment in Jeroo’s Java/C++/C#-style language begins with the digraph // 
and continues until the end of the line. 

Introduction to Jeroo—Java/C++/C# Style  15



4.2  Form of a Jeroo Program 
 Methods are the primary components of a Jeroo program.  Every Jeroo program must 
have exactly one main method, and it may contain any number of programmer-defined 
Jeroo methods.  Programmer-defined Jeroo methods are discussed in chapter 5. 
 
 The main method describes how to use one or more Jeroos to solve a specific problem.  The 
form of the main method is shown in figure 4.1.  Everything that appears between the braces 
should be indented 2 or 3 spaces. 
 
 
 
 

method main() 
{ 
 
   
 
  
 
 
 
 
 
 
}  //===== end of method main() ===== 

 
 

Empty parentheses 
are required 

Braces mark the 
beginning and end 
of the body. 

Body of the method 

Declare one or more Jeroos. 

Write a sequence of statements that 
describe how to use the Jeroos to solve a 
specific problem. 

Figure 4.1 – Form of the main method 
 

Introduction to Jeroo—Java/C++/C# Style  16



 
4.3  Declaring and Instantiating Jeroos 
 Every Jeroo program uses from one to four Jeroo objects to solve a problem.  The 
first part of the main method must be used to declare and instantiate all the Jeroos that 
will be used by the program.  The syntax of this statement is shown in figure 4.2.  There 
are two parts to the statement, the declaration and the instantiation. 
 
 
 
 
 

Jeroo name   =   new Jeroo(...); 
 

Instantiation  Declaration  

 
 
 

Figure 4.3 – Syntax for Declaring and Instantiating a Jeroo 
 
Declaration Portion 
The declaration portion indicates that the programmer plans to use a Jeroo to help solve 
the problem.  The programmer must provide an identifier (or name) for the Jeroo object. 
The following box contains the rules for creating identifiers in Jeroo’s programming 
language. 
 

 The first character must be a letter, a dollar sign ($), or an underscore (_). 
 The remaining characters can be letters, digits, dollar signs, or underscores. 
 There is no limit on the length of an identifier. 

 
 
Instantiation Portion 
 The instantiation portion is a request that the Jeroo object be created.  The crucial part 
of the instantiation is the constructor, which has the form  Jeroo(...).  The 
parentheses are to be filled in with initial values of the attributes for that Jeroo object.   
Every Jeroo object has three attributes: its location, its direction, and the number of 
flowers in its pouch.  If we choose not to specify an initial value for one or more of the 
attributes, the constructor provides default values as shown in table 4.1. 
 

Attribute Default Value 
Location (0,0) 
Direction EAST 
Flowers 0 

 
Table 4.1 – Default Attributes 

Introduction to Jeroo—Java/C++/C# Style  17



 As a convenience, the Jeroo language contains six different constructors, all but one 
of which allows us to provide values for just some of the attributes.  Default values will 
be provided for the others.  The constructors are summarized in table 4.2. 
 
 
Example Attributes 
//---Accept all defaults --- 
 
Jeroo jessica = new Jeroo(); 
 

Name: jessica 
Location: (0,0)  
Direction: EAST 
Flowers:  0 

//--- Specify just the flowers --- 
 
Jeroo jessica = new Jeroo(8); 

Name: jessica 
Location: (0,0)  
Direction: EAST 
Flowers:  8 

//--- Specify just the location --- 
 
Jeroo jessica = new Jeroo(3,4); 

Name: jessica 
Location: (3,4)  
Direction: EAST 
Flowers:  0 

//--- Specify location and direction --- 
 
Jeroo jessica = new Jeroo(3,4,WEST); 

Name: jessica 
Location: (3,4)  
Direction: WEST 
Flowers:  0 

//--- Specify location and flowers --- 
 
Jeroo jessica = new Jeroo(3,4,8); 

Name: jessica 
Location: (3,4)  
Direction: EAST 
Flowers:  8 

//--- Specify all attributes --- 
 
Jeroo jessica = new Jeroo(3,4,SOUTH,8); 

Name: jessica 
Location: (3,4)  
Direction: SOUTH 
Flowers:  8 

 
Table 4.2 – Declaration and Instantiation Examples 

 
 The equal sign between the declaration and instantiation portions indicates that the 
newly created Jeroo object is to be associated with the identifier in the declaration 
portion.

Introduction to Jeroo—Java/C++/C# Style  18



4.4  Action Statements 
 An action statement is a request that a Jeroo perform a specific task.  That task can be 
either one of the basic action methods that are part of the Jeroo language or a Jeroo 
method that has been written by the programmer.  The syntax of an action statement is 
shown in figure 4.3. 
 
 
 
 
 

jeroo_identifier.method_name(...); 
 
 
 
 

Period  Parentheses and 
semicolon 

 
Figure 4.3 – Syntax of an Action Statement 

 
 The Jeroo language includes the seven action methods shown in table 4.3.  Three of 
these, give, turn, and one version of hop require an argument value. 
 
Method Purpose Example 
hop() Hop one space ahead. 

The program terminates with a logic 
error if the hopping Jeroo lands in the 
water, lands on another Jeroo, or 
hops onto a net.  
A Jeroo can hop onto a flower. 

jessica.hop(); 

hop(number) Hop number times in a row, where 
number is a positive integer. 

jessica.hop(3); 
jessica.hop(12); 

pick() Pick a flower from the current 
location.  Nothing happens if there is 
no flower at the current location. 

jessica.pick(); 

plant() Plant a flower at the current location. 
Nothing happens if the jeroo does not 
have a flower to plant. 

jessica.plant(); 

toss() Toss a flower one space ahead.   
The tossed flower is lost forever. 
If the flower lands on a net, the net is 
disabled.   

jessica.toss(); 

turn(relativeDirection) Turn in the indicated direction 
[ turn(AHEAD) and turn(HERE) are 
meaningless ] 
 

jessica.turn(LEFT); 
jessica.turn(RIGHT); 

give(relativeDirection) Give a flower to a neighboring Jeroo 
in the indicated direction.   Nothing 
happens if the giving Jeroo has no 
flowers, or if there is no neighboring 
Jeroo in the indicated direction. 
[ give(HERE) is meaningless ] 

jessica.give(LEFT); 
jessica.give(RIGHT); 
jessica.give(AHEAD); 

Table 4.3 – Basic Actions in the Jeroo Language 

What task?  Argument value  Which Jeroo?  

Introduction to Jeroo—Java/C++/C# Style  19



4.5  Example 4.1 – Pick and Plant 
 This section contains an extended example that demonstrates a recommended process 
for converting an algorithm into completed source code.  We will continue with the 
problem that we started in section 3.3.  The problem statement and the detailed algorithm 
are repeated here for your convenience. 
 
Features of the Jeroo Language 

• Main Method 
• Basic Actions 

 
Problem Statement (Step 1)
 A jeroo starts at (0,0) facing East with no flowers in its pouch.  There is a flower at 
location (0,3).  Write a program that directs the jeroo to pick the flower and plant it at 
location (2,3).  After planting the flower, the jeroo should hop one space east and stop.  
There are no other nets or flowers on the island.  
 
  Jeroo             
  Flower 
 

 0 1 2 3 4   0 1 2 3 4 
0       0      
1       1      
2       2      
3       3      
4       4      

 Start Finish 
 
Detailed Algorithm (Step 4) 

Let’s name the jeroo Bobby. 
Bobby should do the following 
 Get the flower 
  Hop 3 times 
  Pick the flower 
 Put the flower 
  Turn right 
  Hop 2 times 
  Plant a flower 
 Hop East 
  Turn left 
  Hop once 
   
 
 

 

Introduction to Jeroo—Java/C++/C# Style  20



Jeroo Code for “Pick and Plant” 
A good programmer doesn’t write a program all at once.  Instead, the programmer 
will write and test the program in a series of builds.  Each build adds to the previous 
one.  The high-level algorithm will guide us in this process. 

 
FIRST BUILD 

The recommended first build contains three things. 
1.  The main method 
2. Declaration and instantiation of every Jeroo that will be used 
3. The high-level algorithm in the form of comments. 
 
 
method main() 
{ 
   Jeroo Bobby = new Jeroo(); 
 
   //--- Get the flower --- 
 
   //--- Put the flower --- 
 
   //--- Hop East --- 
 
}  //===== end of method main() ===== 

This instantiation places Bobby at (0,0), 
facing East, with no flowers. 

 
 
 Once the first build is working correctly, we can proceed to the others.  In this case, 
each build will correspond to one step in the high-level algorithm.  It may seem like a lot 
of work to use four builds for such a simple program, but doing so helps establish habits 
that will become invaluable as the programs become more complex. 

Introduction to Jeroo—Java/C++/C# Style  21



BUILD 2   
 This build adds the logic to “get the flower”.  The blank lines help show the 
organization of the logic.  The new code is shown in boldface type. 

 
method main() 
{ 
   Jeroo Bobby = new Jeroo(); 
 
   //--- Get the flower --- 
   Bobby.hop(3); 
    
    
 
   Bobby.pick(); 
 
   //--- Put the flower --- 
 
   //--- Hop East --- 
 
}  //===== end of method main() ===== 

 

Hop 3 times 

Pick the flower 

Introduction to Jeroo—Java/C++/C# Style  22



BUILD 3   
 This build adds the logic to “put the flower”.  
 The new code is shown in boldface type. 

 
method main() 
{ 
   Jeroo Bobby = new Jeroo(); 
 
   //--- Get the flower --- 
   Bobby.hop(3); 
 
   Bobby.pick(); 
 
   //--- Put the flower --- 
   Bobby.turn(RIGHT);  
 
 
   Bobby.hop(2); 
    
 
 
   Bobby.plant(); 
 
   //--- Hop East --- 
 
}  //===== end of method main() ===== 

Turn right 

Hop 2 times 

Plant a flower 

 

Introduction to Jeroo—Java/C++/C# Style  23



BUILD 4 (final)   
 This build adds the logic to “hop East”.  
 The new code is shown in boldface type.    

 
method main() 
{ 
   Jeroo Bobby = new Jeroo(); 
 
   //--- Get the flower --- 
   Bobby.hop(3); 
 
   Bobby.pick(); 
 
   //--- Put the flower --- 
   Bobby.turn(RIGHT);  
 
   Bobby.hop(2); 
 
   Bobby.plant(); 
 
   //--- Hop East --- 
   Bobby.turn(LEFT); 
 
   Bobby.hop(); 
 
}  //===== end of method main() ===== 

Hop 1 time 
Could use hop(1)

 
 

Introduction to Jeroo—Java/C++/C# Style  24



 
4.6  Example 4.2 – Replace Net With Flower 
  This section contains a second example that demonstrates the algorithm 
development process.   
 
Features of the Jeroo Language 

• Main Method 
• Basic Actions 

 
Problem Statement (Step 1)
 There are two Jeroos.  One Jeroo starts at (0,0) facing North with one flower in its 
pouch.  The second starts at (2,0) facing East with one flower in its pouch. There is a net 
at location (2,3).  Write a program that directs the first Jeroo to give its flower to the 
second one.  After receiving the flower, the second Jeroo must disable the net, and plant a 
flower in its place.  After planting the flower, the Jeroo must turn and face South.  There 
are no other nets, flowers, or Jeroos on the island. 
 
  Jeroo_1  Flower          
  Jeroo_2   Net 
 

 0 1 2 3 4   0 1 2 3 4 
0       0      
1       1      
2       2      
3       3      
4       4      

 Start Finish 
 
Analysis of the Problem (Step 2) 

1. Jeroo_2 is exactly two spaces behind Jeroo_1. 
2. The only net is exactly three spaces ahead of Jeroo_2.  
3. Each Jeroo has exactly one flower. 
4. Jeroo_2 will have two flowers after receiving one from Jeroo_1 

One flower must be used to disable the net. 
The other flower must be planted at the location of the net, i.e. (2,3). 

5. Jeroo_1 will finish at (1,0) facing South. 
6. Jeroo_2 is to finish at (2,3) facing South. 
7. Each Jeroo will finish with 0 flowers in its pouch.  One flower was used to disable 

the net, and the other was planted. 

Introduction to Jeroo—Java/C++/C# Style  25



High-level Algorithm (Step 3) 
Let’s name the first Jeroo Ann, and the second one Andy. 
Ann should do the following 
 Find Andy (but don’t collide with him) 
 Give a flower to Andy (he will be straight ahead) 
After receiving the flower, Andy should do the following 
 Find the net (but don’t hop onto it) 
 Disable the net 
 Plant a flower at the location of the net 
 Face South 
 

Detailed Algorithm (Step 4) 
Let’s name the first Jeroo Ann, and name the second one Andy. 
Ann should do the following 
 Find Andy 
  Turn around (either left or right twice) 
  Hop (to location (1,0) 
 Give a flower to Andy 
  Give ahead 
Now Andy should do the following 
 Find the net 
  Hop twice (to location (2,2) 
 Disable the net 
  Toss 
 Plant a flower at the location of the net 
  Hop (to location(2,3)) 
  Plant a flower 
 Face South 
  Turn right 

 
Review the Algorithm (Step 5) 

1. The high-level algorithm helps manage the details. 
2. This algorithm solves a very specific problem, but the specific locations are not 

important.  The only thing that is important is the starting location of the Jeroos 
relative to one another and the location of the net relative to the second Jeroo’s 
location and direction.   

 
 

Introduction to Jeroo—Java/C++/C# Style  26



Jeroo Code for “Replace Net With Flower” 
As before, the code should be written as a series of builds.  Four builds will be 
suitable for this problem.  As usual, the first build will contain the main method, the 
declaration and instantiation of the Jeroo objects, and the high-level algorithm in the 
form of comments.  The second build will have Ann give her flower to Andy. The 
third build will have Andy locate and disable the net.  In the final build, Andy will 
place the flower and turn East.  

 
BUILD 1   
 This build creates the main method, instantiates the Jeroos, and outlines the high-level 
algorithm.  

 
method main() 
{ 
   Jeroo Ann  = new Jeroo(0,0,NORTH,1); 
   Jeroo Andy = new Jeroo(2,0,1);  //default EAST 
 
   //--- Ann, find Andy --- 
 
   //--- Ann, give Andy a flower --- 
 
   //--- Andy, find and disable the net ---  
 
   //--- Andy, place a flower at (2,3) --- 
 
   //--- Andy, face South --- 
 
}  //===== end of method main() ===== 

 
 

 
 

Introduction to Jeroo—Java/C++/C# Style  27



BUILD 2 
 This build adds the logic for Ann to locate Andy and give him a flower.  
 The new code is shown in boldface type. 

 
method main() 
{ 
   Jeroo Ann  = new Jeroo(0,0,NORTH,1); 
   Jeroo Andy = new Jeroo(2,0,1);  //-- default EAST 
 
   //--- Ann, find Andy --- 
   Ann.turn(LEFT); 
   Ann.turn(LEFT); 
   Ann.hop();      //-- Ann is at (1,0) facing South 
                   //-- Andy is directly ahead 
 
   //--- Ann, give Andy a flower --- 
   Ann.give(AHEAD);  //-- Ann has 0 flowers, Andy has 2 
 
   //--- Andy, find and disable the net ---  
 
   //--- Andy, place a flower at (2,3) --- 
 
   //--- Andy, face South --- 
 
}  //===== end of method main() ===== 

 
 
 

Introduction to Jeroo—Java/C++/C# Style  28



BUILD 3 
 This build adds the logic for Andy to locate and disable the net.  
 The new code is shown in boldface type. 

 
method main() 
{ 
   Jeroo Ann  = new Jeroo(0,0,NORTH,1); 
   Jeroo Andy = new Jeroo(2,0,1);  //default EAST 
 
   //--- Ann, find Andy --- 
   Ann.turn(LEFT); 
   Ann.turn(LEFT); 
   Ann.hop();      //-- Ann is at (1,0) facing South 
                   //-- Andy is directly ahead 
 
   //--- Ann, give Andy a flower --- 
   Ann.give(AHEAD);  //-- Ann has 0 flowers, Andy has 2 
 
   //--- Andy, find and disable the net ---  
   Andy.hop(2);   //-- Andy is at (2,2) facing the net 
 
   Andy.toss();   
 
   //--- Andy, place a flower at (2,3) --- 
 
   //--- Andy, face South --- 
 
}  //===== end of method main() ===== 

 
 

Introduction to Jeroo—Java/C++/C# Style  29



BUILD 4  (Final) 
 This build adds the logic for Andy to place a flower at (2,3) and turn South.  
 The new code is shown in boldface type. 

 
method main() 
{ 
   Jeroo Ann  = new Jeroo(0,0,NORTH,1); 
   Jeroo Andy = new Jeroo(2,0,1);  //default EAST 
 
   //--- Ann, find Andy --- 
   Ann.turn(LEFT); 
   Ann.turn(LEFT); 
   Ann.hop();      //-- Ann is at (1,0) facing South 
                   //-- Andy is directly ahead 
 
   //--- Ann, give Andy a flower --- 
   Ann.give(AHEAD);  //-- Ann has 0 flowers, Andy has 2 
 
   //--- Andy, find and disable the net ---  
   Andy.hop(2);   //-- Andy is at (2,2) facing the net 
 
   Andy.toss();   
 
   //--- Andy, place a flower at (2,3) --- 
   Andy.hop(); 
   Andy.plant(); 
 
   //--- Andy, face South --- 
   Andy.turn(RIGHT); 
 
}  //===== end of method main() ===== 

 
 

Introduction to Jeroo—Java/C++/C# Style  30



Chapter 5 – Creating and Using Jeroo Methods 
 
 The Jeroo language contains a set of fundamental methods that define the basic 
behaviors of every Jeroo.  These include the basic actions (table 4.3) and the sensor 
methods (table 6.3).  Some problems are such that it would be convenient if we could 
extend the basic behaviors of the Jeroos.  The Jeroo language allows us to write 
programmer-defined Jeroo methods that extend the behavior of every Jeroo. 
 
5.1  Creating and Using a Jeroo Method 
 The concepts of behavior and method were defined in section 2.7 and are repeated 
here.  A behavior is an action that an object can take or a task that it can perform in 
response to a request from an external source.  A method is a collection of statements 
that are written in some programming language to describe a specific behavior.   
 These definitions imply that the creation of a method is a two-part process. First, we 
need to define and name the new behavior.  Second, we need to write the source code for 
the method. 
  
Defining a Behavior 
 The first question we must ask is “How do I decide on a good behavior?”  There is no 
fixed answer to this question, but there are some guidelines to follow.   

1. Examine the high-level algorithm.  Any complex, but well-defined, step is a 
candidate for a new behavior, especially if two or more Jeroos need to perform 
that step. 

2. Examine the detailed-algorithm.  Any sequence of steps that occur several times 
is a candidate for a new behavior.  

 
 These guidelines serve as a starting point, but experience is a good teacher.  Examine 
your own programs and those of others.  A good behavior has a very clear definition and 
is used more than once in the program. 
 

Introduction to Jeroo—Java/C++/C# Style  31



Writing a Jeroo Method 
  A Jeroo method contains the source code that describes what an arbitrary Jeroo needs to 
do to carry out the corresponding behavior.  The form of a Jeroo method is shown in figure 5.1 
for Jeroo’s Java/C++/C#-style language.  The method_identifier on the first line (the header line) 
is a name that the programmer chooses for the method.  The name should indicate the 
corresponding behavior.  The rules for creating an identifier for a method are the same as those 
given in section 4.3.  As with the main method, we should indent every line between the opening 
and closing braces in every Jeroo method. 
 
 
 
 

method method_identifier() 
{ 
 
   
 
  
 
 
 
 
 
 
}  //===== end of method method_identifier() ===== 

 
 

Empty parentheses 
are required 

Braces mark the 
beginning and end 
of the body. 

Body of the method 

Write a sequence of statements that 
describe how an arbitrary Jeroo can 
carry out the corresponding behavior. 

Figure 5.1 – Form of a Java-Style Jeroo Method 
 

 There is one important difference between a Jeroo method and the main method.  
Since a Jeroo method defines a behavior that applies to every Jeroo, we cannot send a 
message to a specific Jeroo.  Instead, we simply write the name of the method.  When the 
program is running, the messages are sent to the Jeroo that is performing the entire 
method.  
 

EXAMPLE 
 New Behavior:  Turn around 
 

//********************************************** 
// This method makes a Jeroo turn 180 degrees 
//********************************************** 
method turnAround() 
{ 
   turn(LEFT); 
   turn(LEFT); 
}  //===== end method turnAround() ===== 

  

Introduction to Jeroo—Java/C++/C# Style  32



 It is possible for one Jeroo method to use another, or even itself. 
 

EXAMPLE 
 New Behaviors: Plant four flowers in a row 
  Plant two adjacent rows with four flowers per row 
 

//********************************************** 
// This method plants four flowers in a row. 
// starting at the current location 
//********************************************** 
method plantFour() 
{ 
   plant();   //-- one --- 
 
   hop(); 
   plant();   //-- two --- 
 
   hop(); 
   plant();   //-- three --- 
 
 
   hop(); 
   plant();   //-- four --- 
 
}  //===== end method plantFour() ===== 
 
//************************************************** 
// This method plants two adjacent rows of flowers. 
//**************************************************  
method plantRowsOfFour() 
{ 
   //--- Plant first row --- 
   plantFour(); 
 
   //--- Move into position for next row --- 
   turn(RIGHT); 
   hop(); 
   turn(RIGHT); 
 
   //--- Plant second row (in opposite direction) --- 
   plantFour(); 
 
}  //===== end method plantRowsOfFour() ===== 

 

Introduction to Jeroo—Java/C++/C# Style  33



Using a Jeroo Method 
 A Jeroo method is used just like any other method.  In the main method, we send a 
message to a specific Jeroo object, requesting that Jeroo to perform the task associated 
with the method. 
 
EXAMPLE  

Let’s have Jeroo Ali plant two rows of flowers, south and east of (5,5) 
 
method main() 
{ 
   Jeroo Ali = new Jeroo(5,5,8); 
 
   Ali.plantRowsOfFour(); 
 
}  //===== end method main() ===== 

 
5.2 Preconditions and Postconditions 
 We should always define a behavior carefully before we write the code for the 
corresponding method.  A complete definition for a behavior must include a statement of 
the preconditions and the postconditions.   
 A precondition for a method is something that is assumed to be true before the 
method is invoked.  The portion of the code that invokes the method is responsible for 
ensuring that all preconditions are satisfied before the method is invoked. 
 A postcondition for a method is something that is true after the method has been 
executed.  The code within the method is responsible for ensuring that all postconditions 
are met. 
 The process of determining good preconditions and postconditions can be difficult, 
but it is easier if we remember a few characteristics of objects and methods. 

1. All work is done by sending messages to objects. 
2. Exactly one object executes a method in response to a message. 
3. A method can modify the attributes of the object that executes the method, but 

cannot directly modify the attributes of any other object. 
4. One method can send messages to several different objects, and those messages 

can lead to modifications in their receivers. 
 

Introduction to Jeroo—Java/C++/C# Style  34



 Using the previous list of characteristics as a guide, we can use the following 
questions as a basis for writing preconditions and postconditions.  When we are working 
with the Jeroo language, we only have to consider two classes of objects, Jeroos and 
Island cells.  We need to consider how a method can change the attributes of the Jeroo 
object that executes the method.  The Island cells are less evident because we cannot send 
them messages, but the Jeroo actions pick, plant, and toss can change the contents of a 
cell.  Behind the scenes, the pick, plant, and toss methods send appropriate messages to 
the island cells. 
 
Precondition Questions Postcondition Questions 
Do any of the attributes of the receiving 
object need to have specific values? 
 Location 
 Direction 
 Flowers 

How does this method affect the attributes 
of the receiving object?  
 Location 
 Direction 
 Flowers 

Are the contents of certain island cells 
important? 

Have the contents of any island cells 
changed? 

 
 The preconditions and postconditions can be created rather informally, but the final 
versions should be stated in a comment block at the beginning of the source code for the 
method. 

EXAMPLE 
 New Behavior: Plant four flowers in a row 
 

//********************************************** 
// This method plants four flowers in a row. 
// starting at the current location 
// 
//PRECONDITIONS 
//  1. The three spaces directly ahead of 
//     the Jeroo are clear. 
//  2. The Jeroo has at least four flowers. 
//POSTCONDITIONS 
//  1. The Jeroo has planted four flowers, 
//     starting at its current location and 
//     proceeding straight ahead. 
//  2. The Jeroo is standing on the last flower, 
//     and facing in its original direction. 
//********************************************** 

  

Introduction to Jeroo—Java/C++/C# Style  35



5.3  Example 5.1 – Clear Nets and Pick 
 
 The section contains an extended example that demonstrates the algorithm 
development process, and shows a recommended process for developing source code that 
contains Jeroo methods. 
 
Features of the Jeroo Language 

• Main Method 
• Basic Actions 
• Jeroo Methods (programmer-defined methods) 

 
Problem Statement (Step 1)
 A Jeroo starts at (1,4) facing North with 5 flowers in its pouch.  There are two nets 
immediately South of the Jeroo at locations (2,4) and (3,4).  There is a flower directly 
South of the second net.  Write a program that directs the Jeroo to disable the nets and 
pick the flower.  After picking the flower, the Jeroo should return to its starting location 
and face South.  
 
 
  Jeroo             
  Flower 
  Net 
 

 0 1 2 3 4   0 1 2 3 4 
0       0      
1       1      
2       2      
3       3      
4       4      

 Start Finish 
 
 
 
Analysis of the Problem (Step 2) 

1. The Jeroo must turn around to locate the first net 
2. Each net is directly South of the previous one 
3. The first net is directly South of the Jeroo 
4. The flower is at location (4,4) 
5. The Jeroo must finish facing South at location (1,4) 
6. The Jeroo should finish with 5 – 2 + 1 = 4 flowers 

 
 

 
 

Introduction to Jeroo—Java/C++/C# Style  36



Detailed Algorithm (Steps 3 and 4) 
Let’s name the Jeroo kim. 
kim should do the following 
 Turn around   //now at (1,4) facing South 
 Disable two nets in a row 
  Toss 
  Hop once   // now at (2,4) facing South 
  Toss 
  Hop once  // now at (3,4) facing South 
 Get the flower 
  Hop once  // now on flower at (4,4) facing South 
  Pick 
 Go back to (1,4) and turn around 
  Turn around   // now at (4,4) facing North 
  Hop 3 times   // now at (1,4) facing North 
  Turn around  //now at (1,4) facing South 
   

Review the Algorithm (Step 5) 
1. The high-level algorithm helps manage the details. 
2. We used a “turn around” step in example 4.2.  We can use the same logic here. 
3. The act of turning around appears as a step in the high-level algorithm and as part 

of the “Go back to (1,4) and turn around” step.  Interesting!   
 

Introduction to Jeroo—Java/C++/C# Style  37



Possible Behaviors 
 1.  “Turn around” is used three times 
 2.  The sequence “Toss, Hop” is used two times in the Disable nets step. 
 
 We will write a Jeroo method for each of these behaviors, but first, we need to define 

a purpose, preconditions, and postconditions for each method.  This can be done 
informally, because we will write these things in a comment block at the beginning of 
each method. 
 
Method:  turnAround() 
Purpose:  Make the Jeroo turn 180 degrees 
Preconditons:   
 none 
Postconditons:   
 The Jeroo has turned 180 degrees 
 The Jeroo is at the same location. 
 
 
 
Method:  tossAndHop() 
Purpose:   
 Disable a net and move to the newly cleared location 
Preconditons:   
 There is a net ahead 
 The Jeroo has at least one flower 
Postconditons:  
 The net has been disabled 
 The Jeroo has one less flower 
 The Jeroo is at the location originally occupied by the net 
 The Jeroo has not changed direction 
 

 The last postcondition of the tossAndHop method simply says that the Jeroo is facing 
the direction it was facing at the start of the method.  It does not prohibit the Jeroo from 
changing direction during the course of the method as long as the Jeroo returns to its 
original direction at the end.

Introduction to Jeroo—Java/C++/C# Style  38



Jeroo Code for “Clear Nets and Pick” 
As before, we should develop the code as a series of builds.   

 
FIRST BUILD 

The recommended first build contains three things. 
1.  The main method 
2. Declaration and instantiation of every Jeroo that will be used 
3. The high-level algorithm in the form of comments. 
4. Skeletons for each of the Jeroo methods.  These skeletons are often called stubs. 
 
 
method main() 
{ 
   Jeroo kim = new Jeroo(1,4,NORTH,5); 
 
   //--- Turn around --- 
 
   //--- Disable nets --- 
 
   //--- Get the flower --- 
 
   //--- Go back to (1,4) and turn around --- 
 
}  //===== end of method main() ===== 

Introduction to Jeroo—Java/C++/C# Style  39



 
########### Jeroo methods ################## 
 
//********************************************* 
// PURPOSE  Turn 180 degrees 
// 
// PRECONDITIONS 
//    none 
// POSTCONDITONS 
//  1.  The Jeroo has turned 180 degrees 
//  2.  The Jeroo is at the same location 
//********************************************* 
method turnAround() 
{ 
}  //===== end method turnAround() ===== 
 
 
 
//********************************************* 
// PURPOSE  Disable a net and move to  
//    the newly cleared location 
// 
// PRECONDITIONS 
//  1. There is a net ahead 
//  2. The Jeroo has at least one flower 
// POSTCONDITONS 
//  1.  The net has been disabled 
//  2.  The Jeroo has one less flower 
//  3.  The Jeroo is at the location originally 
//      occupied by the net 
//  4.  The Jeroo has not changed direction. 
//********************************************* 
method tossAndHop() 
{ 
}  //===== end method tossAndHop() ===== 

 

Introduction to Jeroo—Java/C++/C# Style  40



 BUILD 2 
This build finishes the turnAround method and uses it in the main method.  The new 
code is shown in boldface type.  It would be wise to test this method four times, each 
time start with kim facing in a different direction.  Once we are comfortable that this 
method works correctly, we can proceed with the next build.   
 
 
method main() 
{ 
   Jeroo kim = new Jeroo(1,4,NORTH,5); 
 
   //--- Turn around --- 
   kim.turnAround(); 
 
   //--- Disable nets --- 
 
   //--- Get the flower --- 
 
   //--- Go back to (1,4) and turn around --- 
 
}  //===== end of method main() ===== 

Send the turnAround 
message to invoke the 
turnAround method. 

Introduction to Jeroo—Java/C++/C# Style  41



 
########### Jeroo methods ################## 
 
//********************************************* 
// PURPOSE  Turn 180 degrees 
// 
// PRECONDITIONS 
//    none 
// POSTCONDITONS 
//  1.  The Jeroo has turned 180 degrees 
//  2.  The Jeroo is at the same location 
//********************************************* 
method turnAround() 
{ 
   turn(LEFT); 
   turn(LEFT); 
}  //===== end method turnAround() ===== 
 
 
 
//********************************************* 
// PURPOSE  Disable a net and move to  
//    the newly cleared location 
// 
// PRECONDITIONS 
//  1. There is a net ahead 
//  2. The Jeroo has at least one flower 
// POSTCONDITONS 
//  1.  The net has been disabled 
//  2.  The Jeroo has one less flower 
//  3.  The Jeroo is at the location originally 
//      occupied by the net 
//  4.  The Jeroo has not changed direction 
//********************************************* 
method tossAndHop() 
{ 
}  //===== end method tossAndHop() ===== 

 

Introduction to Jeroo—Java/C++/C# Style  42



BUILD 3 
This build finishes the tossAndHop method and uses it in the main method.  Our 
focus is on destroying the two nets.  The new code is shown in boldface type. 
 
method main() 
{ 
   Jeroo kim = new Jeroo(1,4,NORTH,5); 
 
   //--- Turn around --- 
   kim.turnAround(); 
 
   //--- Disable nets --- 
   kim.tossAndHop(); 
   kim.tossAndHop(); 
 
   //--- Get the flower --- 
 
   //--- Go back to (1,4) and turn around --- 
 
}  //===== end of method main() ===== 

Send the tossAndHop 
message to invoke the 
tossAndHop method. 

Introduction to Jeroo—Java/C++/C# Style  43



 
########### Jeroo methods ################## 
 
//********************************************* 
// PURPOSE  Turn 180 degrees 
// 
// PRECONDITIONS 
//    none 
// POSTCONDITONS 
//  1.  The Jeroo has turned 180 degrees 
//  2.  The Jeroo is at the same location 
//********************************************* 
method turnAround() 
{ 
   turn(LEFT); 
   turn(LEFT); 
}  //===== end method turnAround() ===== 
 
 
 
//********************************************* 
// PURPOSE  Disable a net and move to  
//    the newly cleared location 
// 
// PRECONDITIONS 
//  1. There is a net ahead 
//  2. The Jeroo has at least one flower 
// POSTCONDITONS 
//  1.  The net has been disabled 
//  2.  The Jeroo has one less flower 
//  3.  The Jeroo is at the location originally 
//      occupied by the net 
//  4.  The Jeroo has not changed direction 
//********************************************* 
method tossAndHop() 
{ 
   toss(); 
   hop(); 
}  //===== end method tossAndHop() ===== 

 

Introduction to Jeroo—Java/C++/C# Style  44



BUILD 4 (final) 
This build finishes the program.  The new code is shown in boldface type.  We need 
to check to see that kim has the correct number of flowers at the end. 
 
method main() 
{ 
   Jeroo kim = new Jeroo(1,4,NORTH,5); 
 
   //--- Turn around --- 
   kim.turnAround(); 
 
   //--- Disable nets --- 
   kim.tossAndHop(); 
   kim.tossAndHop(); 
 
   //--- Get the flower --- 
   kim.hop(); 
   kim.pick(); 
 
   //--- Go back to (1,4) and turn around --- 
   kim.turnAround(); 
   kim.hop(3); 
   kim.turnAround(); 
 
}  //===== end of method main() ===== 

Introduction to Jeroo—Java/C++/C# Style  45



 
########### Jeroo methods ################## 
 
//********************************************* 
// PURPOSE  Turn 180 degrees 
// 
// PRECONDITIONS 
//    none 
// POSTCONDITONS 
//  1.  The Jeroo has turned 180 degrees 
//  2.  The Jeroo is at the same location 
//********************************************* 
method turnAround() 
{ 
   turn(LEFT); 
   turn(LEFT); 
}  //===== end method turnAround() ===== 
 
 
 
//********************************************* 
// PURPOSE  Disable a net and move to  
//    the newly cleared location 
// 
// PRECONDITIONS 
//  1. There is a net ahead 
//  2. The Jeroo has at least one flower 
// POSTCONDITONS 
//  1.  The net has been disabled 
//  2.  The Jeroo has one less flower 
//  3.  The Jeroo is at the location originally 
//      occupied by the net 
//  4.  The Jeroo has not changed direction 
//********************************************* 
method tossAndHop() 
{ 
   toss(); 
   hop(); 
}  //===== end method tossAndHop() ===== 

 

Introduction to Jeroo—Java/C++/C# Style  46



Chapter 6 – Control Structures 
 
 The methods that we have written thus far have a common characteristic – sequential 
execution.  Sequential execution means that the statements are executed one after another 
in the order that they appear in the source code.  In this chapter, we will learn how to 
create a block of statements that can be executed several times in succession, how to 
create an optional block of statements, and how to create alternative blocks of statements. 
 
6.1  Generic Control Structures 
 A control structure is a feature of a programming language that determines the order 
in which statements will be executed.  There are three categories of control structures: (1) 
sequential structure, (2) repetition structures (also called loops), and (3) selection 
structures. 
 The sequential structure is the default structure that is used by all programming 
languages.  Unless we indicate otherwise, the statements will be executed in the order 
that they appear in the source code, and each statement will be executed exactly once 
each time a method is called.  Every program that we have seen thus far uses nothing but 
the sequential structure. 
 A condition is a crucial part of the repetition structures and the selection structures.  A 
condition is any expression that can be either true or false.  Conditions in the Jeroo 
language are described in sections 6.2 and 6.5. 
 Every repetition structure (or loop) allows a group of statements to be executed 
several times in succession.  There are two important selection structures: a loop that is 
controlled by the state of the objects in the program, and a loop that is controlled by a 
counter.  The Jeroo language supports just one kind of loop, one that is controlled by the 
state of the objects in the program.  The Jeroo language does not support a counter-
controlled loop because Jeroos can’t count. 
 Every selection structure defines alternate paths through the source code.  There are 
three important selection structures: an if structure, an if-else structure, and a multi-way 
branching structure.  An if structure (sometimes called an if-then structure) defines an 
optional block of statements.  An if-else structure (sometimes called an if-then-else 
structure) defines two different blocks of statements, only one of which will be executed.  
A multi-way branching structure defines several different blocks of statements, only 
one of which will be executed.  Some programming languages have an explicit statement 
such as switch or case to create a multi-way branching structure. Jeroo’s Java/C++/C#-
style language has both an if structure and an if-else structure, and it supports a common 
technique for building a multi-way branching structure. 
 

Introduction to Jeroo—Java/C++/C# Style  47



6.1.1 Generic Repetition Structures 
 There are two major parts to every repetition structure, the body and the controlling 
condition.  These two parts provide a way to classify loops. 
 The block of statements that can be executed repeatedly is called the body of the 
loop.  Each time that the statements in the body are executed is called a trip (or iteration) 
through the loop, and the number of times the body is executed is called the trip count. 
 The controlling condition is a condition that is checked to determine whether to 
make a trip through the body or terminate the loop.  The controlling condition is 
rechecked after each trip through the body of the loop. 
 One criterion for classifying loops is based on when the controlling condition is 
checked relative to the first trip through the body.  In a pretest loop, the controlling 
condition is always checked before the body can be executed for the first time. In a 
posttest loop, the controlling condition is not checked until after the first trip through the 
body.  In either case, the condition is checked after each trip through the body to 
determine whether or not to make another trip.   
 A second criterion for classifying loops is based on whether a true condition or a false 
condition leads to a trip through the body.  In a while loop, a true condition leads to a trip 
through the body, but a false condition terminates the loop.  In an until loop, a true 
condition terminates the loop, but a false condition leads to a trip through the body.  The 
difference between the while and until loops is summarized in table 6.1. 
 

WHILE UNTIL 
Condition Action Condition Action 
   true Make a trip through body    true Terminate the loop 
   false Terminate the loop    false Make a trip through body 

Table 6.1 – Comparison of While and Until Loops 
 
 Combining these two criteria, we can define four broad categories of loops: pretest 
while, pretest until, posttest while, and posttest until.  Table 6.2 shows the relationship 
between these categories and some popular programming languages.  
 
Pre/Post While/Until Jeroo Java Python VB.NET Other Languages 
Pretest While X X X X most 
 Until     COBOL but  

few others 
Posttest While  X   many 
 Until    X PASCAL and  

several others 
Table 6.2 – Loops and Languages 

 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  48



 Since the Jeroo language only contains one repetition structure, we will take a closer 
look at the pretest while loop.  Figure 6.1 shows a generic pretest while loop and uses 
arrows to show the order in which statements are executed and the condition is checked. 
  

1. Execute  “some statement” 
2. Check the condition 
 true – execute body  
            recheck condition 
 false – terminate loop 
           execute “next statement? 
       

 
 
 
 
 
 
 
 
 
 
 

//some statement 
 
 
while( condition ) 
{                   [false] 
   [true]        
 
   //statements in the body 
 
} 
 
//next statement 

Figure 6.1 – Semantics of a Pretest while Loop 
 
 
6.1.2 Generic Selection Structures 
 An if structure (sometimes called an if-then structure) defines an optional block of 
statements.  There are two parts to an if structure, the selection condition and the true 
branch.  The true branch contains a block of statements that will only be executed 
whenever the selection condition is true.   
 Figure 6.2 shows a generic if structure, and uses arrows to show the order in which 
statements will be executed.  There are some similarities with the while loop, but there is 
one important difference.  The if structure (NOT ”if loop”) defines optional code, and 
that code is either skipped or executed just once.  There is no repetition. 
 
 
 
 
 
 
 
 
 
 
 
 
 

//some statement 
 
if( condition ) 
{                   [false] 
   [true]        
 
   //true branch 
 
} 
 
 
 
//next statement 

1. Execute  “some statement” 
2. Check the condition 
 true – execute true branch 
 false – skip true branch 
3. execute “next statement? 
       

Figure 6.2 – Semantics of an if Structure 
 

Introduction to Jeroo—Java/C++/C# Style  49



 An if-else structure (sometimes called an if-then-else structure) defines two different 
blocks of statements, only one of which will be executed. An if-else structure consists of 
three parts, the selection condition, the true branch, and the false branch.  The true branch 
contains a block of statements that will be executed whenever the selection condition is 
true.  The false branch contains a block of statements that will be executed whenever the 
selection condition is false. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

//some statement 
 
if( condition ) 
{                   [false] 
   [true]        
 
   //true branch 
 
} 
else 
{ 
   //false branch 
 
} 
 
 
 
//next statement 

1. Execute  “some statement” 
2. Check the condition 
 true – execute true branch 
                 skip false branch 
 false – skip true branch 
                 execute false branch 
3. execute “next statement? 
       

Figure 6.3 – Semantics of an if-else Structure 
 
 

Introduction to Jeroo—Java/C++/C# Style  50



6.2 Conditions Using Sensor Methods 
 The sensor methods are used to ask a Jeroo something about its immediate 
surroundings.  Each sensor method has either a true or a false result.  Any method that 
produces either true or false as a result is called a Boolean method.  More generally, any 
expression that is either true or false is called a Boolean expression.  This means that the 
conditions that are used in various control structures are, in fact, Boolean expressions. 
 In the Jeroo language, the sensor methods are the basic building blocks for creating 
conditions.  The simplest way to create a condition is to invoke a sensor method.  Table 
6.3 lists all of the sensor methods in the Jeroo language.  These methods can only be used 
to construct conditions.  Since they are methods, they are invoked by sending a message 
to a Jeroo object. 
 
Method Purpose Example 
hasFlower() Does this Jeroo have any 

flowers? 
dean.hasFlower() 

isClear( relativeDirection ) Is there a clear space in the 
indicated direction?  A clear 
space contains no flower, no net, 
no water, and no Jeroo. 
[isClear(HERE) is meaningless] 

dean.isClear(LEFT) 
dean.isClear(AHEAD)  
dean.isClear(RIGHT) 

isFacing( compassDirection ) Is this Jeroo facing in the 
indicated direction? 

dean.isFacing(NORTH)  
dean.isFacing(EAST) 
dean.isFacing(SOUTH) 
dean.isFacing(WEST) 

isFlower( relativeDirection ) Is there a flower in the indicated 
direction? 

dean.isFlower(HERE) 
dean.isFlower(LEFT) 
dean.isFlower(AHEAD)  
dean.isFlower(RIGHT) 

isJeroo( relativeDirection ) Is there another Jeroo in the 
indicated direction? 
[isJeroo(HERE) is meaningless] 

dean.isJeroo(LEFT) 
dean.isJeroo(RIGHT) 
dean.isJeroo(AHEAD) 

isNet( relativeDirection ) Is there a net in the indicated 
direction?  
[isNet(HERE) is meaningless] 

dean.isNet(LEFT) 
dean.isNet(AHEAD) 
dean.isNet(RIGHT) 

isWater( relativeDirection ) Is there water in the indicated 
direction?  
[isWater(HERE) is meaningless] 

dean.isWater(LEFT)  
dean.isWater(AHEAD)  
dean.isWater(RIGHT) 

 
Table 6.3 – Jeroo’s Sensor Methods 

 

Introduction to Jeroo—Java/C++/C# Style  51



6.3  Repetition Structures in Jeroo 
 A pretest while loop is the only repetition structure in the Jeroo language.  Figure 6.4 
shows the syntax of the pretest while loop in Jeroo’s Java/C++/C#-style language.   
 
 There are three important things to observe about the syntax.   

1. The condition must be in parentheses. 
2. There is no semicolon after the parentheses.   
3. The while structure is not a method, which means that we do not send it as a 

message to a Jeroo object. 
 
 There are three important things to observe about the coding style. 

1. Braces are used to define the beginning and end of the body. 
2. The braces are aligned with the start of the word while. 
3. The statements between the braces should be indented 2 or 3 spaces. 

 
 
 
 
 
 
 

Figure 6.4 – Jeroo’s pretest while Structure 
 
 

EXAMPLE (pretest while structure) 
 Assume that a Jeroo named Kim is not standing on a flower, but there is a line of 
flowers ahead. Have Kim pick all of those flowers, and stop as soon as there is no 
flower directly ahead.  After picking all of the flowers, Kim should turn to the left. 
 

  while( Kim.isFlower(AHEAD) ) 
{ 
 Kim.hop(); 
 Kim.pick(); 
} 
 
Kim.turn(LEFT); 
 

 
while( condition ) 
{ 

No semicolon 

 //statements that comprise the body of the loop 
} 

 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  52



6.4  Selection Structures in Jeroo 
 The Jeroo language supports both an if structure and an if-else structure, and supports 
a way to construct a multi-way branching structure.  The syntax of each is shown below.  
An example of each follows its syntax.   
 
6.4.1 Jeroo’s if structure 
 Figure 6.5 shows the syntax of the if structure in Jeroo’s Java/C++/C#-style language.   
 
 There are three important things to observe about the syntax.   

1. The condition must be in parentheses. 
2. There is no semicolon after the parentheses.   
3. The if structure is not a method, which means that we do not send it as a message 

to a Jeroo object. 
 
 There are three important things to observe about the coding style. 

1. Braces are used to define the beginning and end of the true branch. 
2. The braces are aligned with the start of the word if. 
3. The statements between the braces should be indented 2 or 3 spaces. 

 
 

if( condition ) No semicolon 

{ 
 //statements that comprise the true branch 
} 

 
 
 
 
 
 

Figure 6.5 – Jeroo’s if Structure 
 
 

EXAMPLE (if structure) 
 Have the Jeroo named Jessica check for a net to her right.  If there is one, have her 
disable it and return to her current state.  Whether or not she disables a net, Jessica 
should hop one space ahead. 
 

if( Jessica.isNet(RIGHT) ) 
{ 
 Jessica.turn(RIGHT); 
 Jessica.toss(); 
 Jessica.turn(LEFT); 
} 
 
Jessica.hop(); 

  
 

Introduction to Jeroo—Java/C++/C# Style  53



6.4.2 Jeroo’s if-else structure 
 Figure 6.6 shows the syntax of the if-else structure in Jeroo’s Java/C++/C#-style 
language.   
 
 There are four important things to observe about the syntax.   

1. The condition must be in parentheses. 
2. There is no semicolon after the parentheses.   
3. There is no semicolon after the keyword else. 
4. The if-else structure is not a method, which means that we do not send it as a 

message to a Jeroo object. 
 
 There are three important things to observe about the coding style. 

1. Braces are used to define the beginning and end of both the true branch and the 
false branch. 

2. The braces are aligned with the start of the words if and else. 
3. The statements between the braces should be indented 2 or 3 spaces. 

 

//statements that comprise the false branch 

 
if( condition ) 
{ 
 //statements that comprise the true branch 

No semicolon 

} 
else 
{ 
 
} 

 
 
 
 
 
 
 
 
 

Figure 6.6 – Jeroo’s if-else Structure 
 

EXAMPLE (if-else structure) 
 Have the Jeroo named Timmy check for a net straight ahead.  If there is one, have 
him disable it and turn around.  If there is not a net straight ahead, Timmy should turn 
right.  After he disables the net and turns around or simply turns right, Timmy must 
move one space forward. 
 

if( Timmy.isNet(AHEAD) ) 
{ 
 Timmy.toss(); 
 Timmy.turn(LEFT);  
 Timmy.turn(LEFT); 
} 
else 
{ 
 Timmy.turn(RIGHT); 
} 
 
Timmy.hop(); 

 
  
 
 
 
 
 
 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  54



6.4.3 Jeroo’s multi-way selection structure (a cascaded if) 
 Figure 6.7 shows a common technique for writing a multi-way selection structure in 
Jeroo’s Java/C++/C#-style language.  Technically, this structure consists of a series of 
nested if statements, but the coding style obscures this fact and makes the multi-way 
selection logic more evident.  This particular structure is often called a cascaded if.   
 
 There are five important things to observe about this structure   

1. Each condition must be in parentheses. 
2. There is no semicolon after the parentheses.   
3. There is no limit on the number of else-if blocks. 
4. The final else branch is optional. 
5. This structure is not a method, which means that we do not send it as a message to 

a Jeroo object. 
 
 There are three important things to observe about the coding style. 

1. Braces are used to define the beginning and end of each branch. 
2. The braces are aligned with the start of the words if and else. 
3. The statements between the braces should be indented 2 or 3 spaces. 

 
 

if( condition_1 ) 
{ 
 //statements to execute when condition_1 is true 
} 
else if ( condition_2 )  
{ 
 //statements to execute when condition_2 is true 
} 
 
//more else if blocks as necessary 
 
else if ( last_condition )  
{ 
 //statements to execute when last_condition is true 
} 
else 
{ 
 //statements to execute when all conditions are false 
}

else if 
is two words 

The else branch  
is optional 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7 – Jeroo’s Multi-Way Selection Structure 
 

Introduction to Jeroo—Java/C++/C# Style  55



EXAMPLE (cascaded if structure) 
 Assume that a Jeroo named Louisa is carrying at least one flower.  Have her 
check the cell ahead. If that cell contains a flower, pick it.  If that cell contains a net, 
disable it.  If that cell contains water, plant a flower at the current location.  If that cell 
contains another Jeroo, give that Jeroo a flower.   Finally, if there is nothing in that 
cell, have her hop once and turn left. 
 
 

if( Louisa.isFlower(AHEAD) ) 
{ 
 Louisa.hop(); 
 Louisa.pick(); 
} 
else if ( Louisa.isNet(AHEAD) )  
{ 
 Louisa.toss(); 
} 
else if ( Louisa.isWater(AHEAD) )  
{ 
 Louisa.plant(); 
} 
else if ( Louisa.isJeroo(AHEAD) ) 
{ 
 Louisa.give(AHEAD); 
} 
else 
{ 
 Louisa.hop(); 
 Louisa.turn(LEFT); 
} 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  56



 
6.5  Compound Conditions 
 Conditions come in two forms, simple and compound.  A simple condition is a 
Boolean expression that does not contain any other Boolean expression.  In the Jeroo 
language, a simple condition is formed by invoking a single sensor method.  A compound 
condition is created by using logical operators to combine conditions.  The Jeroo 
language contains the three most commonly used logical operators: negation (not), 
conjunction (and), and disjunction (or).  Jeroo’s Java/C++/C#-style language uses special 
keystrokes for each of these as shown in table 6.4. 
 

Operator Jeroo Symbol Meaning 
Negation !   (exclamation point) NOT 
Conjunction &&  (2 keystrokes; no space between) AND 
Disjunction ||  (2 keystrokes; no space between) OR 

 
Table 6.4 – Jeroo’s Java-Style Logical Operators 

 
 The negation reverses the value of a Boolean expression, changing true to false and 
false to true.  Table 6.5 shows the result of applying the negation operator to a Boolean 
expression.  In this table, P represents an arbitrary Boolean expression.  The two rows 
underneath P show its possible values.  The second column shows the corresponding 
values for the expression !P. 
 

P !P 
true false 
false true 

 
Table 6.5 – Truth Table for Negation 

 
 The conjunction combines two Boolean expressions, to create a third that is only true 
when both of the original expressions are true.  Table 6.6 shows the result of applying the 
conjunction operator to a Boolean expression. In this table, P, and Q represent arbitrary 
Boolean expressions.  The rows underneath P and Q show all possible combinations of 
their values.  The third column shows the corresponding values for P && Q. 
 

P Q P && Q 
true  true  true  
true  false  false  
false  true  false  
false  false  false  

 
Table 6.6 – Truth Table for Conjunction 

 

Introduction to Jeroo—Java/C++/C# Style  57



 The disjunction combines two Boolean expressions, to create a third that is only false 
when both of the original expressions are false.  Table 6.7 shows the result of applying 
the disjunction operator to a Boolean expression. In this table, P, and Q represent 
arbitrary Boolean expressions.  The rows underneath P and Q show all possible 
combinations of their values.  The third column shows the corresponding values for the 
expression P || Q. 
 

P Q P || Q 
true  true  true  
true  false  true  
false  true  true 
false  false  false  

 
Table 6.7 – Truth Table for Disjunction 

 
  

EXAMPLES (compound conditions) 
 Remember that these are expressions that could be either true or false.  They are 
not statements of fact. 
 

Boolean Expression (Java-style) English Translation 
! Bob.isNet(AHEAD) There is not a net ahead of Bob  
Bob.hasFlower() && Bob.isClear(LEFT) Bob has at least one flower and there is 

nothing in the cell immediately to the left 
of Bob. 

Bob.isWater(AHEAD) || Bob.isWater(RIGHT) There is water ahead of Bob or to the right 
of Bob, or both 

Bob.isFacing(WEST) &&  
( ! Bob.isNet(AHEAD) ) 

Bob is facing west and there is no net 
ahead 

 
 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  58



Appendix A – The Java/C++/C# Language Summary 
 
 
A.1  General Principles 

• The language is case-sensitive.  
• Every Jeroo program consists of comments, blank lines, and statements. 
• The rules for creating identifiers (names for Jeroos and methods) are the same as those 

for creating identifiers in Java.  
• Each program must have exactly one main method. 
• All Jeroos must be declared and instantiated at the beginning of the main method. 
• A program can have zero or more programmer-defined Jeroo methods. 
• There is no limit to the number of programmer-defined Jeroo methods. 
• The Jeroo methods are written one after another. 
• Only comments and blank lines can appear between methods. 
• Jeroo methods can be recursive.  This means that any method may invoke itself. 

 
A.2  Comments and Blank Lines 
 A comment in Jeroo begins with the digraph // and continues until the end of the line.  
Comments and blank lines can be inserted anywhere in a Jeroo program. 
 
A.3  Identifiers 
 An identifier is a name that a programmer creates for a Jeroo or a method.  The rules for 
creating an identifier in Jeroo’s Java-style language are the same as those used in Java. 

1.  The first character must be a letter, a dollar sign ($), or an underscore (_). 
2.  The remaining characters can be letters, digits, dollar signs, and underscores. 
3.  There is no limit on the length of an identifier. 

 
A.4  Statements 
 There are three types of statements in the Jeroo language:   declaration/instantiation 
statements, method invocations, and control structures.  These are described in subsequent 
sections of this appendix. 
 

Introduction to Jeroo—Java/C++/C# Style  59



A.5  Declaring and Instantiating a Jeroo 
 Table A.1 shows examples of the six possible ways to declare and instantiate a Jeroo.  Each 
statement gives you control over the initial values for some of the Jeroo’s attributes.  Use the 
version that most closely suits your needs, and replace the name, location, direction, and number 
of flowers with whatever values you desire. 
 

Example Attributes 
Jeroo jessica = new Jeroo(); Name: jessica. 

Location: (0,0)  
Direction: EAST 
Flowers:  0 

Jeroo jessica = new Jeroo(8); Name: jessica. 
Location: (0,0)  
Direction: EAST 
Flowers:  8 

Jeroo jessica = new Jeroo(3,4); Name: jessica. 
Location: (3,4)  
Direction: EAST 
Flowers:  0 

Jeroo jessica = new Jeroo(3,4,WEST); Name: jessica. 
Location: (3,4)  
Direction: WEST 
Flowers:  0 

Jeroo jessica = new Jeroo(3,4,8); Name: jessica. 
Location: (3,4)  
Direction: EAST 
Flowers:  8 

Jeroo jessica = new Jeroo(3,4,SOUTH,8); Name: jessica. 
Location: (3,4)  
Direction: SOUTH 
Flowers:  8 

 
Table A.1 – Jeroo’s Declaration and Instantiation Options 

 

Introduction to Jeroo—Java/C++/C# Style  60



A.6  Basic Actions 
 The Jeroo language contains six basic actions as shown in table A.2.   
 Two different methods correspond to the hop action. 
 
Method Purpose Example 
hop() Hop one space ahead. 

The program terminates with an error 
condition if the hopping Jeroo lands 
in the water, lands on another Jeroo, 
or hops onto a net.   
A Jeroo can hop onto a flower. 

jessica.hop(); 

hop(number) Hop number times in a row, where 
number is a positive integer. 

jessica.hop(3); 
jessica.hop(12); 

pick() Pick a flower from the current 
location.  Nothing happens if there is 
no flower at the current location. 

jessica.pick(); 

plant() Plant a flower at the current location. 
Nothing happens if the Jeroo does 
not have a flower to plant. 

jessica.plant(); 

toss() Toss a flower one space ahead.   
The tossed flower is lost forever. 
If the flower lands on a net, the net is 
disabled.   

jessica.toss(); 

turn(relativeDirection) Turn in the indicated direction 
[ turn(AHEAD) and turn(HERE)  
   are meaningless ] 
 

jessica.turn(LEFT); 
jessica.turn(RIGHT); 

give(relativeDirection) Give a flower to a Jeroo in a 
neighboring cell in the indicated 
direction.  Nothing happens if the 
giving Jeroo has no flowers or if 
there is no Jeroo in the indicated 
direction. 
[give(HERE) is meaningless ] 

jessica.give(LEFT); 
jessica.give(RIGHT); 

 
Table A.2 – Jeroo’s Basic Actions 

 
A.7  Direction 
 Each Jeroo knows four relative directions and four compass directions as shown in table A.3.  
Each direction must be written in UPPER CASE.  The relative direction HERE refers to the 
Jeroo’s current location.  The HERE direction is only useful with the Boolean method isFlower. 
 

Relative Directions Compass Directions 
LEFT 
RIGHT 
AHEAD 
HERE 

NORTH 
EAST 
SOUTH 
WEST 

 
Table A.3 – Jeroo’s Directions 

 
 
 

Introduction to Jeroo—Java/C++/C# Style  61



 
A.8  Methods 
 The Jeroo language supports two types of methods: a main method and programmer-defined 
Jeroo methods. The main method describes how to use one or more Jeroos to solve a specific 
problem.  A programmer-defined Jeroo method describes a specific behavior that every Jeroo 
will be able to execute. A Jeroo program must contain exactly one main method, but it may 
contain any number of programmer-defined Jeroo methods. 
 
Format of the Main Method 

The main method contains the logic for using one or more Jeroos to solve a specific problem. 
 
method main() 
{ 
 
   
 
  
 
 
 
 
} 
 

 
Example 
 

method main() 
{ 
   Jeroo jessica = new Jeroo(2,1); 
   Jeroo dean    = new Jeroo(4,3,SOUTH,5); 
 
   jessica.hop(); 
   dean.turn(LEFT); 
   dean.toss(); 
 
}  //===== end method main() ===== 

Declare one or more Jeroos. 

Write a sequence of statements that 
describe how to use the Jeroos to solve a 
specific problem. 

Introduction to Jeroo—Java/C++/C# Style  62



A.9  Format of a Programmer-Defined Jeroo Method 
• A complete program can contain any number of Jeroo methods.   
• Each method describes a behavior that all Jeroos will be able to execute.  
• A Jeroo method can contain any number of control structures. 
• A method may invoke (use) another Jeroo method. 
• A Jeroo method cannot contain declaration/instantiation statements. 
• Since a Jeroo method can be executed by any Jeroo, all messages within a method must 

be written without naming a specific Jeroo.   
For example, write hop(); instead of jessica.hop(); . 

 
 
method method_name() 
{ 
 
   
 
  
 
}  //===== end method method_name() ===== 
 

 
 
 
 
Examples 

 
method tripleStep() 
{ 
   hop(); 
   hop(); 
   hop(); 
}  //===== end method tripleStep() ===== 
 
method pickLineAhead() 
{ 
   while( isFlower(AHEAD) ) 
 { 
      hop(); 
  pick(); 
 } 
}  //===== end method pickLineAhead() ===== 

Write the logic for solving the problem 

Introduction to Jeroo—Java/C++/C# Style  63



A.10  Sending a Message to a Jeroo 
 The logic for solving a problem consists of sending messages to specific Jeroos.  Each 
message is a request that a particular Jeroo either execute a method that is part of the basic Jeroo 
language, or execute a programmer-defined Jeroo method. A message consists of the name of a 
method followed by a pair of parentheses. The syntax of sending a message is shown below.  
 

jeroo_name.method_name(…); 
 

Required parentheses 
Either empty or with an 
appropriate argument 

l

Required semicolon 

Required period 
 
 
 
 
 
Replace the values of jeroo_name and method_name with whatever names are appropriate 
for your program. 
 
Examples 

 
mary.hop();   //tell mary to hop once 
 
john.pick();  //tell john to pick a flower 

 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  64



A.11  Control Structures 
 Control structures are used to alter the flow of control within a program. The Jeroo language 
supports the basic control structures shown in table A.4.  Control structures can be nested within 
one another in whatever way is suitable for completing a particular task.  Parentheses are 
required where they are shown. 
 
Control Structure Syntax (short form) Syntax (block form) 
if if ( condition ) 

   single_statement; 
if ( condition ) 
{ 
   one or more statements 
} 
 

if-else if ( condition ) 
   single_statement; 
else 
   single_statement; 

if ( condition ) 
{ 
   one or more statements 
} 
else 
{ 
   one or more statements 
} 
 

multi-way branch 
 
Technically, this is a 
nested if, but this is a 
common form for defining 
three or more alternatives. 

if ( condition )  
 single statement; 
else if ( condition )  
 single statement; 
 
more else if branches 
if necessary 
 
else  
 single statement; 
 

if ( condition )  
{ 
   one or more statements 
} 
else if ( condition )  
{ 
   one or more statements 
} 
 
 more else if branches  
 if necessary 
 
else 
{ 
   one or more statements 
} 

while  while ( condition ) 
   single_statement; 

while ( condition ) 
{ 
   one or more statements 
} 
 

 
Table A.4 – Jeroo’s Control Structures 

 
 

Introduction to Jeroo—Java/C++/C# Style  65



 
A.12  Boolean Methods 
 Boolean methods are used to ask a Jeroo something about its immediate surroundings.  Each 
Boolean method has either a true of a false result. Table A.5 shows all of the Boolean methods 
in the Jeroo language.  Boolean methods can only be used to build conditions. 
 
Method Purpose Example 
hasFlower() Does this Jeroo have any 

flowers? 
dean.hasFlower() 

isClear( relativeDirection ) Is there a clear space in the 
indicated direction?  A clear 
space contains no flower, no net, 
no water, and no Jeroo. 
[isClear(HERE) is meaningless] 

dean.isClear(LEFT) 
dean.isClear(AHEAD)  
dean.isClear(RIGHT) 

isFacing( compassDirection ) Is this Jeroo facing in the 
indicated direction? 

dean.isFacing(NORTH)  
dean.isFacing(EAST) 
dean.isFacing(SOUTH) 
dean.isFacing(WEST) 

isFlower( relativeDirection ) Is there a flower in the indicated 
direction? 

dean.isFlower(HERE) 
dean.isFlower(LEFT) 
dean.isFlower(AHEAD)  
dean.isFlower(RIGHT) 

isJeroo( relativeDirection ) Is there another Jeroo in the 
indicated direction? 
[isJeroo(HERE) is meaningless] 

dean.isJeroo(LEFT) 
dean.isJeroo(RIGHT) 
dean.isJeroo(AHEAD) 

isNet( relativeDirection ) Is there a net in the indicated 
direction?  
[isNet(HERE) is meaningless] 

dean.isNet(LEFT) 
dean.isNet(AHEAD) 
dean.isNet(RIGHT) 

isWater( relativeDirection ) Is there water in the indicated 
direction?  
[isWater(HERE) is meaningless] 

dean.isWater(LEFT)  
dean.isWater(AHEAD)  
dean.isWater(RIGHT) 

 
Table A.5 – Jeroo’s Boolean Methods 

 

Introduction to Jeroo—Java/C++/C# Style  66



A.13  Conditions 
 Conditions are used to build control structures (if, if-else, cascaded if, and while).   
 There are two types of conditions in the Jeroo language. 
 

Simple Condition 
 A simple condition is formed by sending a Boolean message to a specific Jeroo. 
 Example:   jessica.isNet(AHEAD)  
 
Compound Condition 
 A compound condition is constructed from simple conditions and the Boolean (or logical) 

operators shown in table A.6.   
 

Boolean  
Operator 

 
Meaning 

 
Name 

! NOT Negation  
&& AND Conjunction 
|| OR Disjunction 

 
 Table A.6 – Jeroo’s Boolean Operators 
 
 A negation is formed by placing an exclamation point in front of a simple or compound 

condition.  The effect is equivalent to saying: “The following is not true.” 
 Example:   ! jessica.isNet(AHEAD)   
 This example means: “It is not true that there is a net ahead of jessica.” 
 
 A conjunction is formed by placing the operator && between two conditions, each of 

which is either simple or compound.  There must be at least one space on either side of 
the && operator. 

 Example:  jessica.isNet(RIGHT)  &&  jessica.isNet(LEFT) 
 This example means: “There are nets to the right and left of jessica”.  
 
 A disjunction is formed by placing the operator || between two conditions, each of 

which is either simple or compound.  There must be at least one space on either side of 
the || operator. 

 
 Example:  jessica.isWater(AHEAD)  ||  jessica.isFlower(HERE) 
 This example means: “There is water directly ahead of jessica, or jessica is standing on a 

flower, or both”. 

Introduction to Jeroo—Java/C++/C# Style  67



Appendix B – A Brief History of Jeroo 
 
Early 1970’s – LOGO Turtles 
 Dr. Seymour Papert of The Massachusetts Institute of Technology conducted extensive 

research into the design of programming languages.  Part of his research involved teaching 
elementary school students to write programs that would move robotic turtles around the 
floor.  One product of his work was the LOGO programming language. 

 
Late 1970’s – Karel the Robot 
 Dr. Richard Pattis developed Karel the Robot at Stanford University as a teaching/learning 

tool.  The design of Karel was inspired by Dr. Papert’s work with robotic turtles.  Students 
would write programs in a Pascal-like language to move Karel (a virtual entity) and have him 
interact with walls and beepers that could be placed in his (virtual) world.  Karel stripped 
away many of the complexities that are associated with developing even a simple program, 
and allowed students to focus on problem decomposition, control structures, and 
subprograms. 

  
1990 – Jessica 
 Lai Kuan Tong developed the Jessica program as her Master’s project at Illinois State 

University under the direction of Dr. Dean Sanders.  Jessica is a teaching/learning program 
that was inspired by Karel the Robot.  While Ms Tong’s work was never published, the 
Jessica program was used successfully for several years at Illinois State University. 

 
1999 – Analysis for Jessica’s successor 
 A team of undergraduate students in Dr. Sanders’ software engineering class at Northwest 

Missouri State University conducted a system analysis relative to the development of a Java-
like successor to the Jessica program.  Those students developed preliminary prototypes for 
the user interface and the design of the language that the students would use. 

 

Introduction to Jeroo—Java/C++/C# Style  68



2001 – Snipe 
 A second team of undergraduate students extended the work of the 1999 team.  Working 
under the codename “Snipe”, these students refined the preliminary prototypes and implemented 
a basic version of the simulator. 
 
2002-2003 – Jeroo 
 Dr. Dean Sanders of Northwest Missouri State University and Mr. Brian Dorn of the 
Georgia Institute of Technology developed Jeroo.  Mr. Dorn is a 2002 graduate of 
Northwest and was a member of the 2001 Snipe team.  Using the Snipe project as a 
prototype, Sanders and Dorn refined the user interface, extended the Jeroo programming 
language, made extensive revisions to the design of the simulator, and implemented a 
beta version.  During the Fall semester of 2002, approximately 100 students at Northwest 
Missouri State University used the beta version of Jeroo in an introductory programming 
course.  Jeroo was released for general use in the Spring of 2003. 
 
2004 – Premier Award 
 In 2004, Jeroo received the Premier Award for excellence in Engineering Education 
Software.   
 
Ongoing 
 Since the original release, Dr. Sanders and Mr. Dorn have continued to revise, extend, 
and improve Jeroo.  The most significant enhancements include the following. 

• Support for three programming language styles: Python, VB.NET, and the 
original Java/C++/C# 

• Enhancements to the source code editor 
• Improvements to the user interface 

Comments from students and instructors continue to help shape Jeroo; send yours to 
support@jeroo.org.  

Introduction to Jeroo—Java/C++/C# Style  69

mailto:support@jeroo.org


Appendix C – Using Jeroo 
 
 
C.1  Installing Jeroo  
 Jeroo has been tested under Linux, Solaris, Mac OS-X, and several versions of Windows. 

• Make sure that Java 2 version 1.4.0_01 or later has been installed on your system. 
• Copy the file jeroo.jar into any convenient directory.  This is an executable jar file. 

We suggest C:\Jeroo under Windows. 
• Under Windows, create a desktop shortcut to the file jeroo.jar, and  

use the icon jeroo.ico with the shortcut. 
 
C.2  Starting the Simulator 
 There are two ways to start the Jeroo simulator.  

 
• Make sure that your screen resolution is set to 800 by 600 or higher. 
• Under Windows double-click on the Jeroo icon on your desktop. 
• On a Unix system (or in a command window under Windows) type the command 

   java  -jar  jeroo.jar  
This example assumes that the directory containing jeroo.jar is already in your search path. 

 
 The first time you start Jeroo on a specific computer, you will see the preferences dialog shown in figure C.1.   
 
 

 
 

Figure C.1 – Initial Preferences Dialog 

Introduction to Jeroo—Java/C++/C# Style  70



 After you complete the preferences dialog, you will see a login dialog similar to figure C.2, but all of the fields 
will be blank.  Enter your name, course identification, and project name. Your name is required, but the other two 
items are optional. The information that you provide will be used to construct a header (or footer) on every page that 
you print from within Jeroo.    The next time you start Jeroo on that computer, these fields will be filled 
automatically; you can modify the fields as necessary.  Click the “Continue” button after you have entered or 
modified the requested information.  Clicking on the “End Program” button will stop the simulator immediately. 
 

 
Figure C.2 – The Login Dialog 

 

Introduction to Jeroo—Java/C++/C# Style  71



C.3  The User Interface 
 Figure C.3 shows the initial appearance of the main screen for the Jeroo simulator.  This screen consists of nine 
main components: the title bar, the menu bar, the toolbar, the source code panes, the island view, the current 
language style panel, the cursor location panel, the message area, and the Jeroo status area.  These areas are 
described in subsequent subsections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Title Bar

Toolbar Menu Bar 

Island View 
Source Code Panes 

Message Area Jeroo Status Area 

Cursor Location Panel Current Language Style Panel 

 
Figure C.3 – The Main Screen 

Introduction to Jeroo—Java/C++/C# Style  72



C.4  The Title Bar 
 The title bar always shows the full path names for the current source code file and the current island file.  The 
word “none” indicates that no file is currently associated with the source code or the layout of the island.  Figure C.4 
shows a typical title bar indicating that the path to the source file is “C:\JerooPrograms\PickAFlower.jsc”, and the 
path to the island file is “C:\JerooPrograms\PickAFlower.jev”. 

 
Figure C.4 – A Typical Title Bar 

 
 
C.5  The Menu Bar 
 The menu bar provides access to menus that help you work with the Jeroo simulator.  Each menu has a name 
with an underlined letter.  That letter is called a mnemonic (a mnemonic is an aid to memory). It doesn’t matter 
whether you use an upper- or lower-case letter for the mnemonic.  To open (display the contents of) a menu, you can 
click the left mouse button or hold down the <Alt> key and type the mnemonic letter. 
 

 
Figure C.5 – The Menu Bar 

 
 
C.6  The Toolbar 
 The toolbar is a collection of buttons that parallel the menus. The buttons on the toolbar are arranged in groups 
that correspond to the various menus.  Click on a button or choose the corresponding item from a menu to select a 
feature of the Jeroo simulator. 
 

 
Figure C.6 – The Toolbar 

 
 

Introduction to Jeroo—Java/C++/C# Style  73



C.7  The Source Code Panes 
 You will use the source code panes to write your Jeroo programs.  Use the pane labeled “main method” to write 
the logic for solving a problem.  Use the pane labeled “Jeroo methods” to write methods that every Jeroo will be 
able to execute.  Click on the tabs to select the desired pane.  The smiley face will show you which pane is currently 
active.  Figure C.7 shows the first part of a main method. 
 

 
Figure C.7 – The Source Code Panes 

 
 

Introduction to Jeroo—Java/C++/C# Style  74



C.8  The Island View 
 The island view area shows the current layout of the island. 
 
 Each flower is represented by the symbol   
  
 Each net is represented by the symbol   
 
 Water is represented by the blue symbol  
 
 When a program is running, each active Jeroo is represented by an arrow that has a unique shape and color.  

The arrow always points in the direction that the Jeroo is headed. 
 Figure C.8 shows a typical island view. 
 

This Jeroo is 
standing on a 
flower 

 
Figure C.8 – The Island View 

 
 

Introduction to Jeroo—Java/C++/C# Style  75



C.9  The Current Language Style Panel 
 The current language style panel shows the programming language style that is being used with the current 
source code file.  The programming language style is automatically saved with the source code file, and is reset 
whenever the file is opened.  The user’s preferences are used to determine the style for each new file.  This panel 
can be used to change the style for the current source code, without affecting the preferred style for new files.  
Figure C.9 indicates that the current source code is assumed to be “Java/C++/C#”. 
 

 
Figure C.9 – The Current Language Style Panel 

 
 
C.10  The Cursor Location Panel 
 The cursor location panel shows the location of the cursor whenever it is over the island.  Figure C.10 indicates 
that the cursor is currently pointing at the cell in row 10, column 13.  The panel displays the phrase “off the island” 
when the cursor is not over the island. 

 
Figure C.10 – The Cursor Location Panel 

 
 
C.11  The Message Area 
 The message area is used to display messages about the state of your Jeroo program.  This area also displays 
messages associated with syntax and runtime errors.  The messages in Figure C.11 indicate that a Jeroo program has 
been compiled successfully and is now being executed step-by-step. 
 

 
Figure C.11 – The Message Area 

 
C.12  The Jeroo Status Area 
 The Jeroo status area is only active when a program is running.  This area provides information about each 
active Jeroo.  The information about a single jeroo shows the number of flowers the jeroo is carrying, the arrow that 
represents the jeroo, and the name of the jeroo.  Figure C.12 shows the appearance of the status area with four active 
jeroos.  Figure C.12 shows that a red arrow represents the jeroo named “bobby” who is facing east and carrying 
eight flowers.  Figure C.12 also shows that the jeroo named “jessica” is represented by a blue arrow, is standing on a 
flower, is facing south, and has two flowers in her pouch. 
 

 
Figure C.12 – The Jeroo Status Area 

 

Introduction to Jeroo—Java/C++/C# Style  76



C.13  The Jeroo Controls  
 The Jeroo controls make it easy for you to work with the simulator.  Each control includes a menu item, a 
toolbar button, a keyboard shortcut, a mnemonic (a memory aid), and a tool tip.  This combination allows you to 
work in whatever way feels comfortable.   
 All of the controls are described in the next few sections.  The first part of each section shows pictures of a 
single menu and the group of toolbar buttons that correspond to that menu.  The second part of each section contains 
a table that describes each control in more detail. 
 
 Let’s look at part of the “Source Edit” controls as an example. 
 
 Menu Toolbar Group

 
 
 

For the Paste control 
The keyboard shortcut is <Ctrl-V> 
The mnemonic letter is ‘P’ 

 
 
 
 
 
 Most menu item contains an icon that matches the one on the corresponding button, a descriptive name, and the 
keyboard shortcut.  Each menu on the menu bar and most items in that menu have an underlined letter.  This is the 
mnemonic letter.  
 Each row of the descriptive tables contains the icon for that control followed by a description of the control.  
The first line of the description contains the menu-menuItem text, the keyboard shortcut, and the menmonic key 
sequence that will open the menu and select the menu item. 
 

Menu name Menu Item Keyboard Shortcut Mnemonic Key Sequence  
 
 
 
 
      

Source Edit – Paste <Ctrl-V> <Alt-E><Alt-P> 
Copy the contents of the system clipboard into the source code area at the current position of the 
cursor. 

  
 
 There are four ways to activate a control. 

1. Left-click on a toolbar button. 
2. Select a menu item. 
3. Type the keyboard shortcut.  In this example, hold down the Ctrl key and type the letter V to activate the 

paste control. 
4. Type the mnemonic key sequence.  In this example, hold down the Alt key and type the letter E to open the 

Source Edit menu, then hold down the Alt key and type the letter P to activate the paste control 
 
 A tool tip will appear whenever you hold the mouse cursor over one of the controls.  Each tip is a brief 
description of the purpose of that control.   

For example, the tip            will appear whenever you hold the mouse over the      button.    
 

Introduction to Jeroo—Java/C++/C# Style  77



C.13.1  Source File Controls 
 These controls allow you to work with files that contain the source code for Jeroo programs. 
 
 Menu Toolbar Group

List of the five most recently 
accessed source code files.  Click 
on one of these to open it. 

 
 
 
      

Source File – New … <Ctrl-N> <Alt-F><Alt-N> 
Clear the source code area, and remove the reference to the current source file, if any.  If the 
source code area contains unsaved code, you will be given the choice of saving the existing source 
code or discarding the changes.  When you request a new file, the programming language style 
will be set according to your preferences. 

 
     

Source File – Open … <Ctrl-O> <Alt-F><Alt-O> 
Open an existing source code file. This action will replace the contents of the source code area.  If 
the source code area contains unsaved code, you will be given the choice of saving the existing 
source code or discarding the changes before the file is opened.  When you open a source code 
file, the current language style will be set to that of the file. 

 
      

Source File –Save <Ctrl-S> <Alt-F><Alt-S> 
Save the contents of the current source code area to the current source file.  If there is no current 
source file, the action is the same as that of the “Save As …” control.  When you save a source 
code file, the current programming language style will be saved along with the source code. 

 
      

Source File – Save As … <Ctrl-A> <Alt-F><Alt-A> 
Save the contents of the current source code area in a file having a name and location that you will 
be asked to provide.  If you specify a file that already exists, you will be given the option of 
replacing the contents of that file or specifying a different file name. 

 
      

Source File – Print <Ctrl-P> <Alt-F><Alt-P> 
Print the contents of the current source code area.  You will have the option of printing just the 
main method, just the Jeroo methods, or both.  The printed pages will have a header that includes 
the identifying information you provided in the login dialog. 

 
      

Source File – Exit <Ctrl-Q> <Alt-F><Alt-x> 
Exit the Jeroo simulator.  You will be given the option of saving any unsaved changes to either 
the source code or the appearance of the island. 

 
 

Introduction to Jeroo—Java/C++/C# Style  78



C.13.2  Source Edit Controls 
 These controls help you edit the source code for a Jeroo program. 
 
 Menu Toolbar Group

 
 
 
 
 
 
 
 
 
 
 
 Set Preferences for editing source code 

(see figure C.13) 
 
Modify the font in the source editor 
(see figure C.14) 

 
 
 
 
 
 
 
      

Source Edit – Cut  <Ctrl-X> <Alt-E><Alt-T> 
Delete the highlighted source code and save the deleted portion on the system clipboard. 
 

 Source Edit – Copy <Ctrl-C> <Alt-E><Alt-C> 
Copy the highlighted source code onto the system clipboard. 
 

 Source Edit – Paste <Ctrl-V> <Alt-E><Alt-P> 
Copy the contents of the system clipboard into the source code area at the current position 
of the cursor. 

 
      
 

Source Edit – Undo last edit <Ctrl-Z> <Alt-E><Alt-N> 
Undo the last cut, paste, deletion, or block of typing. 

 
      

Source Edit – Redo last undo <Ctrl-Y> <Alt-E><Alt-O> 
Redo the last action that was undone. 
 

Comment Lines Source Edit – Comment Lines <F12> 
Convert the selected lines into comment lines.  If no lines have been selected, this action 
applies to just the current line.  The style of the comments corresponds to the current 
language style. 

Uncomment Lines Source Edit – Uncomment Lines <Shift-F12> 
Remove comments from the selected lines.  If no lines have been selected, this action 
applies to just the current line. 

Indent Lines Source Edit – Indent Lines <Tab> 
Indent the selected lines.  If no lines have been selected, the tab key works as usual, and 
this menu item is ignored.  The size of the indentation is determined by the current tab size. 

Unindent Lines Source Edit – Unindent Lines <Shift-Tab> 
Unindent the selected lines.  If no lines have been selected, the <Shift-Tab> works as usual, 
and this menu item is ignored.  Selected lines are moved to the left by an amount that is 
determined by the current tab size, or by the start of the line, whichever comes first. 

Introduction to Jeroo—Java/C++/C# Style  79



 
 

Figure C.13 – The View/Change Preferences Dialog 
 
 
 
 
 
 
 

 
 

Figure C.14 – The Font Selection Dialog 
 

Introduction to Jeroo—Java/C++/C# Style  80



C.13.3  Run Controls 
 These controls allow you to run a Jeroo program step-by-step or without pausing between steps.  When you run 
a Jeroo program, lines in the source code will be highlighted just before they are to be executed.  The effect of 
executing a statement can be seen in the island area. 
 
 Menu Toolbar Group
 

 
 
 
 
 
 
 
 
 
 
 

      
 

Run – Reset  < F2> <Alt-R><Alt-R> 
Clear all messages, highlighting, and status panels. 
Reset the island to the layout it had before the last time a program was run.   
This control also re-enables editing and some controls. 

 

      
 

Run – Run Stepwise < F3> <Alt-R><Alt-S> 
Run the current Jeroo program one step at a time.  The source code will be saved before running 
the Jeroo program.  The program will be compiled and run based on the current programming 
language style. 

 

      

Run – Run Continuously < F4> <Alt-R><Alt-C> 
Run the current Jeroo program without stopping between statements. The source code will be 
saved before running the Jeroo program.  The speed control can be used to make the program run 
slower or faster.  The program will be compiled and run based on the current programming 
language style. 

 

      
 

Run – Pause < F5> <Alt-R><Alt-P> 
Pause a program that is running continuously. 
You can change the speed whenever the program is paused. 

 

      
 

Run – Stop Run < F6> <Alt-R><Alt-T> 
Stop a program that is running continuously. 

 
 

Introduction to Jeroo—Java/C++/C# Style  81



C.13.4  Run Speed Control 
 This control allows you to increase or decrease the speed at which statements will be executed whenever a Jeroo 
program is executed continuously.  The speed should be chosen before activating the “Run Continuously” control, 
but it can be changed whenever the program is paused. 
 
 Menu Toolbar Group
  
 
 
 
 
 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  82



C.13.5  Island File Controls 
 These controls allow you to work with files that contain layout information for the island. 
 
 Menu Toolbar Group

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

List of the five most recently 
accessed island files.  Click on one 
of these to open it. 

 
 
      
 

Island – New …  < Ctrl-Shift-N> <Alt-I><Alt-N> 
Clear the island layout, and remove the reference to the current island file, if any.  If the island 
contains any unsaved changes, you will be given the choice of saving the existing island or 
discarding the changes. 

 
      
 

Island – Open … < Ctrl-Shift-O> <Alt-I><Alt-O> 
Open an existing island file. This action will replace the contents of the island area.  If the island 
area contains unsaved changes, you will be given the choice of saving the existing layout of the 
island or discarding the changes before the file is opened. 

 
      

Island – Save …  < Ctrl-Shift-S> <Alt-I><Alt-S> 
Save the current layout of the island to the current island file.  If there is no current island file, the 
action is the same as that of the “Save As …” control. 

 
      
 

Island – Save As …  < Ctrl-Shift-A> <Alt-I><Alt-A> 
Save the current layout of the island in a file having a name and location that you will be asked to 
provide.  If you specify a file that already exists, you will be given the option of replacing the 
contents of that file or specifying a different file name. 

 
      
 

Island – Print  < Ctrl-Shift-P> <Alt-I><Alt-P> 
Print a picture of the island area on a single page.  The printed page will have a footer that 
includes the identifying information you provided in the login dialog. 

 
 

Introduction to Jeroo—Java/C++/C# Style  83



C.13.6  Island Edit Controls 
 These controls allow you to modify the position of flowers and nets on the island.  

 If island editing is disabled, the cursor will change to    whenever it is over the island. 
 Menu Toolbar Group

  
 
 
 
 
 
 
 
 
 
      
 

Island Edit – Plant Flowers < Shift-F7> <Alt-D><Alt-P> 
Place flowers on the island.  

The cursor will change to   whenever it is over the island.   
Click the left mouse button to place a single flower.   
Click the right mouse button to remove a single flower.  
 Hold the left mouse button down to place flowers while moving the mouse.  
 Hold the right mouse button down to remove flowers while moving the mouse. 

 
      
 

Island Edit – Set Nets < Shift-F8> <Alt-D><Alt-N>  
Place nets on the island.  

The cursor will change to   whenever it is over the island.   
Click the left mouse button to place a single net.   
Click the right mouse button to remove a single net.  
 Hold the left mouse button down to place nets while moving the mouse.  
 Hold the right mouse button down to remove nets while moving the mouse. 

 
 

       

Island Edit – Add Water  < Shift-F9> <Alt-D><Alt-W> 
Add water to the island.  

The cursor will change to   whenever it is over the island.   
Click the left mouse button to add water to a single cell.   
Click the right mouse button to remove water from a single cell.  
 Hold the left mouse button down to add water while moving the mouse.  
 Hold the right mouse button down to remove water while moving the mouse. 

 
      
 

Island Edit – Clear Island < Shift-F10> <Alt-D><Alt-C> 
Remove everything from the island. 

 

Introduction to Jeroo—Java/C++/C# Style  84



C.13.7  Help Menu 
 This menu allows you to obtain a language summary, open a tutorial to help you get started, locate Jeroo’s 
homepage, and to learn some facts about Jeroo.   
  
 
 Menu Toolbar Button
 

 
 
 
The Getting Started Tutorial provides an introduction to the process of writing a program, designing an island, 
and running a Jeroo program.  The details of the tutorial are based on the current programming language style.  
The tutorial runs in a separate window that can be moved, resized, or minimized. 
 
The Jeroo Homepage menu item points you to Jeroo’s homepage and summarizes its contents. 

Introduction to Jeroo—Java/C++/C# Style  85



 
 
      
 

Help – Language Summary  < F1>  
Display a language summary window as shown in figure C.15. 
Click on a tab to view the language summary for a specific topic.  
The language summary corresponds to the current programming language style. 
The window may be moved, resized, or minimized. 

 
 

 
 

Figure C.15 – The Java/C++/C# Style Language Summary Window 

Introduction to Jeroo—Java/C++/C# Style  86



C.13.8  Exit Control 
 This control allows you to close the Jeroo simulator. 
 
 Menu Toolbar Button

This menu option 

 
 
 
      
 

Source File – Exit <Ctrl-Q> <Alt-F><Alt-X> 
Exit the Jeroo simulator.  You will be given the option of saving any unsaved changes to either 
the source code or the appearance of the island. 

 
 
 
 

Introduction to Jeroo—Java/C++/C# Style  87


	Figure 1.1 – The Model for Santong Island 
	2.3  Case-Sensitive Language 


